Skip to content
Related Articles

Related Articles

Pandas – GroupBy One Column and Get Mean, Min, and Max values

View Discussion
Improve Article
Save Article
  • Last Updated : 25 Aug, 2020


We can use Groupby function to split dataframe into groups and apply different operations on it. One of them is Aggregation. Aggregation i.e. computing statistical parameters for each group created example – mean, min, max, or sums.

Let’s have a look at how we can group a dataframe by one column and get their mean, min, and max values.

Example 1:




import pandas as pd
  
  
# creating a dataframe
df = pd.DataFrame([('Bike', 'Kawasaki', 186),
                   ('Bike', 'Ducati Panigale', 202),
                   ('Car', 'Bugatti Chiron', 304), 
                   ('Car', 'Jaguar XJ220', 210),
                   ('Bike', 'Lightning LS-218', 218), 
                   ('Car', 'Hennessey Venom GT', 270),
                   ('Bike', 'BMW S1000RR', 188)],
                  columns =('Type', 'Name', 'top_speed(mph)'))
  
df


Output :

Finding mean, min and max values.




# using groupby function with aggregation
# to get mean, min and max values
result = df.groupby('Type').agg({'top_speed(mph)': ['mean', 'min', 'max']})
  
print("Mean, min, and max values of Top Speed grouped by Vehicle Type")
print(result)


Output :

Example 2:




import pandas as pd
  
  
# creating a dataframe
sales_data = pd.DataFrame({
'customer_id':[3005, 3001, 3002, 3009, 3005, 3007,
               3002, 3004, 3009, 3008, 3003, 3002],
      
'salesman_id': [102, 105, 101, 103, 102, 101, 101,
                106, 103, 102, 107, 101],
  
'purchase_amt':[1500, 2700, 1525, 1100, 948, 2400,
                5700, 2000, 1280, 2500, 750, 5050]})
  
sales_data


Output :

Finding mean, min and max values.




# using groupby function with aggregation 
# to get mean, min and max values
result = sales_data.groupby('salesman_id').agg({'purchase_amt': ['mean', 'min', 'max']})
  
print("Mean, min, and max values of Purchase Amount grouped by Salesman id")
print(result)


Output :

Example 3:




import pandas as pd
  
  
# creating a dataframe
df = pd.DataFrame({"Team": ["Radisson", "Radisson", "Gladiators",
                            "Blues", "Gladiators", "Blues"
                            "Gladiators", "Gladiators", "Blues"
                            "Blues", "Radisson", "Radisson"],
                     
        "Position": ["Player", "Extras", "Player", "Extras",
                     "Extras", "Player", "Player", "Player",
                     "Extras", "Player", "Player", "Extras"],
                     
        "Age": [22, 24, 21, 29, 32, 20, 21, 23, 30, 26, 20, 31]})
df


Output :

Finding mean, min and max values.




# using groupby function with aggregation 
# to get mean, min and max values
result = df.groupby('Team').agg({'Age': ['mean', 'min', 'max']})
  
print("Mean, min, and max values of Age grouped by Team")
print(result)


Output :


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!