Pandas.DataFrame.iterrows() function in Python
Pandas DataFrame.iterrows() is used to iterate over a pandas Data frame rows in the form of (index, series) pair. This function iterates over the data frame column, it will return a tuple with the column name and content in form of series.
Syntax: DataFrame.iterrows() Yields: index- The index of the row. A tuple for a MultiIndex data- The data of the row as a Series Returns: it: A generator that iterates over the rows of the frame
Example 1:
Sometimes we need to iter over the data frame rows and columns without using any loops, in this situation Pandas DataFrame.iterrows() plays a crucial role.
Python3
import pandas as pd # Creating a data frame along with column name df = pd.DataFrame([[ 2 , 2.5 , 100 , 4.5 , 8.8 , 95 ]], columns = [ 'int' , 'float' , 'int' , 'float' , 'float' , 'int' ]) # Iter over the data frame rows # # using df.iterrows() itr = next (df.iterrows())[ 1 ] itr |
Output:
In the above example, we use Pandas DataFrame.iterrows() to iter over numeric data frame rows.
Example 2:
Python3
import pandas as pd # Creating a data frame df = pd.DataFrame([[ 'Animal' , 'Baby' , 'Cat' , 'Dog' , 'Elephant' , 'Frog' , 'Gragor' ]]) # Iterating over the data frame rows # using df.iterrows() itr = next (df.iterrows())[ 1 ] itr |
Output :
In the above example, we iter over the data frame having no column names using Pandas DataFrame.iterrows()
Note: As iterrows returns a Series for each row, it does not preserve dtypes across the rows.
Please Login to comment...