Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

numpy.quantile() in Python

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

numpy.quantile(arr, q, axis = None) : Compute the qth quantile of the given data (array elements) along the specified axis. Quantile plays a very important role in Statistics when one deals with the Normal Distribution. In the figure given above, Q2 is the median of the normally distributed data. Q3 – Q2 represents the Interquartile Range of the given dataset.

Parameters : arr : [array_like]input array. q : quantile value. axis : [int or tuples of int]axis along which we want to calculate the quantile value. Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row. out : [ndarray, optional]Different array in which we want to place the result. The array must have same dimensions as expected output. Results : qth quantile of the array (a scalar value if axis is none) or array with quantile values along specified axis.

Code #1: 

Python3




# Python Program illustrating
# numpy.quantile() method
import numpy as np
 
 
# 1D array
arr = [20, 2, 7, 1, 34]
 
print("arr : ", arr)
print("Q2 quantile of arr : ", np.quantile(arr, .50))
print("Q1 quantile of arr : ", np.quantile(arr, .25))
print("Q3 quantile of arr : ", np.quantile(arr, .75))
print("100th quantile of arr : ", np.quantile(arr, .1))
   


Output : 

arr : [20, 2, 7, 1, 34]
Q2 quantile of arr : 7.0)
Q1 quantile of arr : 2.0)
Q3 quantile of arr : 20.0)
100th quantile of arr : 1.4)

  Code #2: 

Python3




# Python Program illustrating
# numpy.quantile() method
import numpy as np
  
# 2D array
arr = [[14, 17, 12, 33, 44], 
       [15, 6, 27, 8, 19],
       [23, 2, 54, 1, 4, ]]
print("\narr : \n", arr)
    
# quantile of the flattened array
print("\n50th quantile of arr, axis = None : ", np.quantile(arr, .50))
print("0th quantile of arr, axis = None : ", np.quantile(arr, 0))
    
# quantile along the axis = 0
print("\n50th quantile of arr, axis = 0 : ", np.quantile(arr, .25, axis = 0))
print("0th quantile of arr, axis = 0 : ", np.quantile(arr, 0, axis = 0))
   
# quantile along the axis = 1
print("\n50th quantile of arr, axis = 1 : ", np.quantile(arr, .50, axis = 1))
print("0th quantile of arr, axis = 1 : ", np.quantile(arr, 0, axis = 1))
  
print("\n0th quantile of arr, axis = 1 : \n",
   np.quantile(arr, .50, axis = 1, keepdims = True))
print("\n0th quantile of arr, axis = 1 : \n",
   np.quantile(arr, 0, axis = 1, keepdims = True))


Output : 

arr : 
[[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]

50th quantile of arr, axis = None : 15.0
0th quantile of arr, axis = None : 1)

50th quantile of arr, axis = 0 : [14.5  4.  19.5  4.5 11.5]
0th quantile of arr, axis = 0 : [14  2 12  1  4]

50th quantile of arr, axis = 1 : [17. 15.  4.]
0th quantile of arr, axis = 1 : [12  6  1]

0th quantile of arr, axis = 1 : 
[[17.]
[15.]
[ 4.]]

0th quantile of arr, axis = 1 : 
[[12]
[ 6]
[ 1]]

My Personal Notes arrow_drop_up
Last Updated : 09 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials