 GFG App
Open App Browser
Continue

The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial.

Syntax :numpy.poly(seq)

Parameters :
Seq : sequence of roots of the polynomial roots, or a matrix of roots.

Return: 1D array having coefficients of the polynomial from the highest degree to the lowest one.
c * x**(N) + c * x**(N-1) + … + c[N-1] * x + c[N] where c always equals 1.

 `# Python code explaining   ` `# numpy.poly()  ` `     `  `# importing libraries  ` `import` `numpy as np  ` `   `  `# Giving the roots  ` `seq_1 ``=` `(``2``, ``1``, ``0``) ` `a ``=` `np.poly(seq_1) ` `print` `(``"Coefficients of the polynomial: "``, a) ` ` `  `# Constructing polynomial   ` `p1 ``=` `np.poly1d(a) ` `print` `(``"\nAbove polynomial = \n"``, p1)  `

Output :

```Coefficients of the polynomial:  [ 1. -3.  2.  0.]

Above polynomial =
3     2
1 x - 3 x + 2 x```

Code #2:

 `# Python code explaining   ` `# numpy.poly()  ` `     `  `# importing libraries  ` `import` `numpy as np  ` ` `  `# Giving the roots ` `seq_2 ``=` `(``2``, ``1``, ``0``, ``2``, ``4``, ``2``) ` `b ``=` `np.poly(seq_2) ` `print` `(``"Coefficients of the polynomial: "``, b) ` ` `  `# Constructing polynomial   ` `p2 ``=` `np.poly1d(b) ` `print` `(``"\nAbove polynomial = \n"``, p2)  `

Output :

```Coefficients of the polynomial:  [  1. -11.  46. -92.  88. -32.   0.]

Above polynomial =
6      5      4      3      2
1 x - 11 x + 46 x - 92 x + 88 x - 32 x
```

My Personal Notes arrow_drop_up