Skip to content
Related Articles

Related Articles

numpy.ma.mask_or() function | Python

Improve Article
Save Article
  • Last Updated : 22 Apr, 2020
Improve Article
Save Article

numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False).

Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True)

Parameters :
m1, m2 : [ array_like] Input masks.
copy : [bool, optional] If copy is False and one of the inputs is nomask, return a view of the other input mask. Defaults to False
shrink : [bool, optional] Whether to shrink the output to nomask if all its values are False. Defaults to True.

Return : The result masks values that are masked in either m1 or m2.

Code #1 :




# Python program explaining
# numpy.ma.mask_or() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
m1 = geek.ma.make_mask([1, 1, 0, 1])
m2 = geek.ma.make_mask([1, 0, 0, 0])
  
gfg = geek.ma.mask_or(m1, m2)
  
print (gfg)


Output :

[ True  True False  True]

 
Code #2 :




# Python program explaining
# numpy.ma.mask_or() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
m1 = geek.ma.make_mask([1, 0, 0, 0])
m2 = geek.ma.make_mask([1, 1, 0, 1])
  
gfg = geek.ma.mask_or(m1, m2)
  
print (gfg)


Output :

[ True  True False  True]

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!