 GFG App
Open App Browser
Continue

numpy.argsort() function is used to perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as arr that would sort the array. It means indices of value arranged in ascending order

Syntax : numpy.argsort(arr, axis=-1, kind=’quicksort’, order=None)

Parameters:

• arr : [array_like] Input array.
• axis : [int or None] Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis.
• kind : [‘quicksort’, ‘mergesort’, ‘heapsort’]Selection algorithm. Default is ‘quicksort’.
• order : [str or list of str] When arr is an array with fields defined, this argument specifies which fields to compare first, second, etc.

Return: [index_array, ndarray] Array of indices that sort arr along the specified axis.If arr is one-dimensional then arr[index_array] returns a sorted arr.

Code #1:

## Python3

 `# Python program explaining` `# argpartition() function`   `import` `numpy as geek`   `# input array` `in_arr ``=` `geek.array([``2``, ``0``, ``1``, ``5``, ``4``, ``1``, ``9``])` `print``(``"Input unsorted array : "``, in_arr)`   `out_arr ``=` `geek.argsort(in_arr)` `print``(``"Output sorted array indices : "``, out_arr)` `print``(``"Output sorted array : "``, in_arr[out_arr])`

Output:

```Input unsorted array :  [2 0 1 5 4 1 9]
Output sorted array indices :  [1 2 5 0 4 3 6]
Output sorted array :  [0 1 1 2 4 5 9]```

Code #2:

## Python3

 `# Python program explaining` `# argpartition() function`   `import` `numpy as geek`   `# input 2d array` `in_arr ``=` `geek.array([[``2``, ``0``, ``1``], [``5``, ``4``, ``3``]])` `print``(``"Input array : "``, in_arr)`   `# output sorted array indices` `out_arr1 ``=` `geek.argsort(in_arr, kind``=``'mergesort'``, axis``=``0``)` `print``(``"Output sorted array indices along axis 0: "``, out_arr1)` `out_arr2 ``=` `geek.argsort(in_arr, kind``=``'heapsort'``, axis``=``1``)` `print``(``"Output sorteded array indices along axis 1: "``, out_arr2)`

Output:

```Input array :  [[2 0 1]
[5 4 3]]
Output sorted array indices along axis 0:  [[0 0 0]
[1 1 1]]
Output sorted array indices along axis 1:  [[1 2 0]
[2 1 0]]```

Code #3:

## Python

 `# get two largest value from numpy array` `x``=``np.array([``12``,``43``,``2``,``100``,``54``,``5``,``68``])` `# using argsort get indices of value of arranged in ascending order` `np.argsort(x)` `#get two highest value index of array ` `np.argsort(x)[``-``2``:]` `# to arrange in ascending order of index` `np.argsort(x)[``-``2``:][::``-``1``]` `# to get highest 2 values from array` `x[np.argsort(x)[``-``2``:][::``-``1``]]`

Output:

```array([2, 5, 0, 1, 4, 6, 3], dtype=int32)
array([6, 3], dtype=int32)
array([3, 6], dtype=int32)
array([100,  68])```

My Personal Notes arrow_drop_up