Numbers in range [L, R] such that the count of their divisors is both even and prime
Given a range [L, R], the task is to find the numbers from the range which have the count of their divisors as even as well as prime.
Then, print the count of the numbers found. The values of L and R are less than 10^6 and L< R.
Examples:
Input: L=3, R=9 Output: Count = 3 Explanation: The numbers are 3, 5, 7 Input : L=3, R=17 Output : Count: 6
- The only number that is prime, as well as even, is ‘2’.
- So, we need to find all the numbers within the given range that have exactly 2 divisors,
i.e. prime numbers.
A simple approach:
- Start a loop from ‘l’ to ‘r’ and check whether the number is prime(it will take more time for bigger range).
- If the number is prime then increment the count variable.
- At the end, print the value of count.
An efficient approach:
- We have to count the prime numbers in range [L, R].
- First, create a sieve which will help in determining whether the number is prime or not in O(1) time.
- Then, create a prefix array to store the count of prime numbers where, element at index ‘i’ holds the count of the prime numbers from ‘1’ to ‘i’.
- Now, if we want to find the count of prime numbers in range [L, R], the count will be (sum[R] – sum[L-1])
- Finally, print the result i.e. (sum[R] – sum[L-1])
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAX 1000000 // stores whether the number is prime or not bool prime[MAX + 1]; // stores the count of prime numbers // less than or equal to the index int sum[MAX + 1]; // create the sieve void SieveOfEratosthenes() { // Create a boolean array "prime[0..n]" and initialize // all the entries as true. A value in prime[i] will // finally be false if 'i' is Not a prime, else true. memset (prime, true , sizeof (prime)); memset (sum, 0, sizeof (sum)); prime[1] = false ; for ( int p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p]) { // Update all multiples of p for ( int i = p * 2; i <= MAX; i += p) prime[i] = false ; } } // stores the prefix sum of number // of primes less than or equal to 'i' for ( int i = 1; i <= MAX; i++) { if (prime[i] == true ) sum[i] = 1; sum[i] += sum[i - 1]; } } // Driver code int main() { // create the sieve SieveOfEratosthenes(); // 'l' and 'r' are the lower and upper bounds // of the range int l = 3, r = 9; // get the value of count int c = (sum[r] - sum[l - 1]); // display the count cout << "Count: " << c << endl; return 0; } |
Java
// Java implementation of the approach class GFG { static final int MAX= 1000000 ; // stores whether the number is prime or not static boolean []prime= new boolean [MAX + 1 ]; // stores the count of prime numbers // less than or equal to the index static int []sum= new int [MAX + 1 ]; // create the sieve static void SieveOfEratosthenes() { // Create a boolean array "prime[0..n]" and initialize // all the entries as true. A value in prime[i] will // finally be false if 'i' is Not a prime, else true. for ( int i= 0 ;i<=MAX;i++) prime[i]= true ; for ( int i= 0 ;i<=MAX;i++) sum[i]= 0 ; prime[ 1 ] = false ; for ( int p = 2 ; p * p <= MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p]) { // Update all multiples of p for ( int i = p * 2 ; i <= MAX; i += p) prime[i] = false ; } } // stores the prefix sum of number // of primes less than or equal to 'i' for ( int i = 1 ; i <= MAX; i++) { if (prime[i] == true ) sum[i] = 1 ; sum[i] += sum[i - 1 ]; } } // Driver code public static void main(String []args) { // create the sieve SieveOfEratosthenes(); // 'l' and 'r' are the lower and upper bounds // of the range int l = 3 , r = 9 ; // get the value of count int c = (sum[r] - sum[l - 1 ]); // display the count System.out.println( "Count: " + c); } } |
Python 3
# Python 3 implementation of the approach MAX = 1000000 # stores whether the number is prime or not prime = [ True ] * ( MAX + 1 ) # stores the count of prime numbers # less than or equal to the index sum = [ 0 ] * ( MAX + 1 ) # create the sieve def SieveOfEratosthenes(): prime[ 1 ] = False p = 2 while p * p < = MAX : # If prime[p] is not changed, # then it is a prime if (prime[p]): # Update all multiples of p i = p * 2 while i < = MAX : prime[i] = False i + = p p + = 1 # stores the prefix sum of number # of primes less than or equal to 'i' for i in range ( 1 , MAX + 1 ): if (prime[i] = = True ): sum [i] = 1 sum [i] + = sum [i - 1 ] # Driver code if __name__ = = "__main__" : # create the sieve SieveOfEratosthenes() # 'l' and 'r' are the lower and # upper bounds of the range l = 3 r = 9 # get the value of count c = ( sum [r] - sum [l - 1 ]) # display the count print ( "Count:" , c) # This code is contributed by ita_c |
C#
// C# implementation of the approach using System; class GFG { static int MAX=1000000; // stores whether the number is prime or not static bool []prime= new bool [MAX + 1]; // stores the count of prime numbers // less than or equal to the index static int []sum= new int [MAX + 1]; // create the sieve static void SieveOfEratosthenes() { // Create a boolean array "prime[0..n]" and initialize // all the entries as true. A value in prime[i] will // finally be false if 'i' is Not a prime, else true. for ( int i=0;i<=MAX;i++) prime[i]= true ; for ( int i=0;i<=MAX;i++) sum[i]=0; prime[1] = false ; for ( int p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p]) { // Update all multiples of p for ( int i = p * 2; i <= MAX; i += p) prime[i] = false ; } } // stores the prefix sum of number // of primes less than or equal to 'i' for ( int i = 1; i <= MAX; i++) { if (prime[i] == true ) sum[i] = 1; sum[i] += sum[i - 1]; } } // Driver code public static void Main() { // create the sieve SieveOfEratosthenes(); // 'l' and 'r' are the lower and upper bounds // of the range int l = 3, r = 9; // get the value of count int c = (sum[r] - sum[l - 1]); // display the count Console.WriteLine( "Count: " + c); } } |
PHP
<?php // PHP implementation of the approach $MAX = 100000; // Create a boolean array "prime[0..n]" // and initialize all the entries as // true. A value in prime[i] will finally // be false if 'i' is Not a prime, else true. // stores whether the number // is prime or not $prime = array_fill (0, $MAX + 1, true); // stores the count of prime numbers // less than or equal to the index $sum = array_fill (0, $MAX + 1, 0); // create the sieve function SieveOfEratosthenes() { global $MAX , $sum , $prime ; $prime [1] = false; for ( $p = 2; $p * $p <= $MAX ; $p ++) { // If prime[p] is not changed, // then it is a prime if ( $prime [ $p ]) { // Update all multiples of p for ( $i = $p * 2; $i <= $MAX ; $i += $p ) $prime [ $i ] = false; } } // stores the prefix sum of number // of primes less than or equal to 'i' for ( $i = 1; $i <= $MAX ; $i ++) { if ( $prime [ $i ] == true) $sum [ $i ] = 1; $sum [ $i ] += $sum [ $i - 1]; } } // Driver code // create the sieve SieveOfEratosthenes(); // 'l' and 'r' are the lower // and upper bounds of the range $l = 3; $r = 9; // get the value of count $c = ( $sum [ $r ] - $sum [ $l - 1]); // display the count echo "Count: " . $c . "\n" ; // This code is contributed by mits ?> |
Javascript
<script> // Javascript implementation of the approach var MAX = 1000000; // stores whether the number is prime or not var prime = Array(MAX+1).fill( true ); // stores the count of prime numbers // less than or equal to the index var sum = Array(MAX+1).fill(0); // create the sieve function SieveOfEratosthenes() { // Create a boolean array "prime[0..n]" and initialize // all the entries as true. A value in prime[i] will // finally be false if 'i' is Not a prime, else true. prime[1] = false ; for ( var p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p]) { // Update all multiples of p for ( var i = p * 2; i <= MAX; i += p) prime[i] = false ; } } // stores the prefix sum of number // of primes less than or equal to 'i' for ( var i = 1; i <= MAX; i++) { if (prime[i] == true ) sum[i] = 1; sum[i] += sum[i - 1]; } } // Driver code // create the sieve SieveOfEratosthenes(); // 'l' and 'r' are the lower and upper bounds // of the range var l = 3, r = 9; // get the value of count var c = (sum[r] - sum[l - 1]); // display the count document.write( "Count: " + c ); </script> |
Output:
Count: 3
Time Complexity: O(MAX3/2)
Auxiliary Space: O(MAX)
Please Login to comment...