Number of subarrays for which product and sum are equal
Given a array of n numbers. We need to count the number of subarrays having the product and sum of elements are equal
Examples:
Input : arr[] = {1, 3, 2} Output : 4 The subarrays are : [0, 0] sum = 1, product = 1, [1, 1] sum = 3, product = 3, [2, 2] sum = 2, product = 2 and [0, 2] sum = 1+3+2=6, product = 1*3*2 = 6 Input : arr[] = {4, 1, 2, 1} Output : 5
The idea is simple, we check for each subarray that if product and sum of its elements are equal or not. If it is then increase the counter variable by 1
Implementation:
C++
// C++ program to count subarrays with // same sum and product. #include<bits/stdc++.h> using namespace std; // returns required number of subarrays int numOfsubarrays( int arr[] , int n) { int count = 0; // Initialize result // checking each subarray for ( int i=0; i<n; i++) { int product = arr[i]; int sum = arr[i]; for ( int j=i+1; j<n; j++) { // checking if product is equal // to sum or not if (product==sum) count++; product *= arr[j]; sum += arr[j]; } if (product==sum) count++; } return count; } // driver function int main() { int arr[] = {1,3,2}; int n = sizeof (arr)/ sizeof (arr[0]); cout << numOfsubarrays(arr , n); return 0; } |
Java
// Java program to count subarrays with // same sum and product. class GFG { // returns required number of subarrays static int numOfsubarrays( int arr[] , int n) { int count = 0 ; // Initialize result // checking each subarray for ( int i= 0 ; i<n; i++) { int product = arr[i]; int sum = arr[i]; for ( int j=i+ 1 ; j<n; j++) { // checking if product is equal // to sum or not if (product==sum) count++; product *= arr[j]; sum += arr[j]; } if (product==sum) count++; } return count; } // Driver function public static void main(String args[]) { int arr[] = { 1 , 3 , 2 }; int n = arr.length; System.out.println(numOfsubarrays(arr , n)); } } |
Python3
# python program to # count subarrays with # same sum and product. # returns required # number of subarrays def numOfsubarrays(arr,n): count = 0 # Initialize result # checking each subarray for i in range (n): product = arr[i] sum = arr[i] for j in range (i + 1 ,n): # checking if product is equal # to sum or not if (product = = sum ): count + = 1 product * = arr[j] sum + = arr[j] if (product = = sum ): count + = 1 return count # Driver code arr = [ 1 , 3 , 2 ] n = len (arr) print (numOfsubarrays(arr , n)) # This code is contributed # by Anant Agarwal. |
C#
// C# program to count subarrays // with same sum and product. using System; class GFG { // returns required number // of subarrays static int numOfsubarrays( int []arr , int n) { // Initialize result int count = 0; // checking each subarray for ( int i = 0; i < n; i++) { int product = arr[i]; int sum = arr[i]; for ( int j = i + 1; j < n; j++) { // checking if product is // equal to sum or not if (product == sum) count++; product *= arr[j]; sum += arr[j]; } if (product == sum) count++; } return count; } // Driver Code public static void Main() { int []arr = {1,3,2}; int n = arr.Length; Console.Write(numOfsubarrays(arr , n)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to count subarrays // with same sum and product. // function returns required // number of subarrays function numOfsubarrays( $arr , $n ) { // Initialize result $count = 0; // checking each subarray for ( $i = 0; $i < $n ; $i ++) { $product = $arr [ $i ]; $sum = $arr [ $i ]; for ( $j = $i + 1; $j < $n ; $j ++) { // checking if product is // equal to sum or not if ( $product == $sum ) $count ++; $product *= $arr [ $j ]; $sum += $arr [ $j ]; } if ( $product == $sum ) $count ++; } return $count ; } // Driver Code $arr = array (1, 3, 2); $n = sizeof( $arr ); echo (numOfsubarrays( $arr , $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to count subarrays // with same sum and product. // Returns required number // of subarrays function numOfsubarrays(arr, n) { // Initialize result let count = 0; // Checking each subarray for (let i = 0; i < n; i++) { let product = arr[i]; let sum = arr[i]; for (let j = i + 1; j < n; j++) { // Checking if product is // equal to sum or not if (product == sum) count++; product *= arr[j]; sum += arr[j]; } if (product == sum) count++; } return count; } // Driver code let arr = [ 1, 3, 2 ]; let n = arr.length; document.write(numOfsubarrays(arr, n)); // This code is contributed by decode2207 </script> |
Output
4
Time Complexity : O(n2)
This article is contributed by Ayush Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...