Number of recycled pairs in an array
Given an array of integers arr[], find the number of recycled pairs in the array. A recycled pair of two numbers {a, b} has the following properties :
- A should be smaller than B.
- Number of digits should be same.
- By rotating A any number of times in one direction, we should get B.
Examples:
Input : arr[] = {32, 42, 13, 23, 9, 5, 31} Output : 2 Explanation : Since there are two pairs {13, 31} and {23, 32}. By rotating 13 for first time, output is 31 and by rotating 23 once output is 32. Both of these pairs satisfy our criteria. Input : arr[] = {1212, 2121} Output : 1 Explanation : Since there are two pairs {1212, 2121}. By rotating 1212 for first time, output is 2121. This pair satisfies our criteria. Note that if rotation id done further, rotating 1212 again output is 1212 which is given number and 2121 which has been already counted. So discard both of these results.
Below is the step by step algorithm to solve the above problem:
- Sort the array.
- Create a new array ‘temp’ of size n where n is the length of original array.
- Remove duplicates from the array by copying unique values to new array ‘temp’.
- Find the number of elements copied from original array and let this number be the size of array.
- Create a HashSet to store only unique rotations of the current number.
- Initialize a counter with value = 0.
- Traverse ‘temp’ and for every number do the following steps –
- Find the number of digits. Let it be ‘d1’.
- Rotate the number for d-1 times and store every number formed by each rotation in a HashSet.
- If formed number is found in HashSet, ignore it.
- For every rotated number, do a binary search for its presence in rest of the array.
- If it is present, increment counter.
Implementation:
C++
// C++ code for Recycled Pairs in array. #include <bits/stdc++.h> using namespace std; // Function to find recycled pairs int recycledPairs( int a[], int n) { int count = 0; // Sorting array sort(a, a + n); // Removing duplicates by creating new array temp. int temp[n]; memset (temp, -1, n); int j = 0; for ( int i = 0; i < n - 1; i++) if (a[i] != a[i + 1]) temp[j++] = a[i]; temp[j++] = a[n - 1]; int size = n; // Finding number of locations in temp // which are occupied from copying. for ( int i = n - 1; i >= 0; i--) if (temp[i] != -1) { size = i; break ; } // Hashset to store new Rotations set< int > hs; for ( int i = 0; i < size + 1; i++) { // Clearing hashset for each number in temp. hs.clear(); int x = temp[i]; // Finding number of digits of taken number int d1 = ( int ) log10 (temp[i]) + 1; int f = ( int ) pow (10, d1 - 1); for (j = 1; j <= d1 - 1; j++) { // Remainder int r = x % 10; // Quotient int q = x / 10; // Forming new number by rotating. x = r * f + q; // Number of digits of newly formed rotated // number to avoid duplicate numbers. int d2 = ( int ) log10 (x) + 1; set< int >::iterator it = hs.find(x); // Inserting formed rotated number to set s if (it == hs.end()) { hs.insert(x); // Checking for number of digits of new // number. if ((d1 == d2)) { // Searching for the formed element in // rest of array. int position = lower_bound(temp + i, temp + size + 1, x) - (temp + i + 1); // If position found if (position >= 0) { // Increment counter. count++; } } } } } // Return counter return count; } // Driver function int main() { int a[] = { 32, 42, 13, 23, 9, 5, 31 }; int n = sizeof (a) / sizeof (a[0]); int result = recycledPairs(a, n); cout << (result); return 0; } // This code is contributed by Rajput-Ji |
Java
// Java code for Recycled Pairs in array. import java.util.*; class GFG { // Function to find recycled pairs static int recycledPairs( int [] a) { int count = 0 ; // Sorting array Arrays.sort(a); int n = a.length; // Removing duplicates by creating new array temp. int [] temp = new int [n]; Arrays.fill(temp, - 1 ); int j = 0 ; for ( int i = 0 ; i < n - 1 ; i++) if (a[i] != a[i + 1 ]) temp[j++] = a[i]; temp[j++] = a[n - 1 ]; int size = n; // Finding number of locations in temp which are // occupied from copying. for ( int i = n - 1 ; i >= 0 ; i--) if (temp[i] != - 1 ) { size = i; break ; } // Hashset to store new Rotations HashSet<Integer> hs = new HashSet<Integer>(); for ( int i = 0 ; i < size + 1 ; i++) { // Clearing hashset for each number in temp. hs.clear(); int x = temp[i]; // Finding number of digits of taken number int d1 = ( int )Math.log10(temp[i]) + 1 ; int f = ( int )Math.pow( 10 , d1 - 1 ); for (j = 1 ; j <= d1 - 1 ; j++) { // Remainder int r = x % 10 ; // Quotient int q = x / 10 ; // Forming new number by rotating. x = r * f + q; // Number of digits of newly formed rotated // number to avoid duplicate numbers. int d2 = ( int )Math.log10(x) + 1 ; // Inserting formed rotated number to set s if (!hs.contains(x)) { hs.add(x); // Checking for number of digits of new // number. if ((d1 == d2)) { // Searching for the formed element // in rest of array. int position = Arrays.binarySearch( temp, i + 1 , size + 1 , x); // If position found if (position >= 0 ) { // Increment counter. count++; } } } } } // Return counter return count; } // Driver function public static void main(String[] args) { int a[] = { 32 , 42 , 13 , 23 , 9 , 5 , 31 }; int result = recycledPairs(a); System.out.println(result); } } |
C#
// C# code for Recycled Pairs in array. using System; using System.Collections.Generic; class GFG { // Function to find recycled pairs static int recycledPairs( int [] a) { int count = 0; // Sorting array Array.Sort(a); int n = a.Length; // Removing duplicates by // creating new array temp. int [] temp = new int [n]; for ( int i = 0; i < n; i++) temp[i] = -1; int j = 0; for ( int i = 0; i < n - 1; i++) if (a[i] != a[i + 1]) temp[j++] = a[i]; temp[j++] = a[n - 1]; int size = n; // Finding number of locations in temp // which are occupied from copying. for ( int i = n - 1; i >= 0; i--) if (temp[i] != -1) { size = i; break ; } // Hashset to store new Rotations HashSet< int > hs = new HashSet< int >(); for ( int i = 0; i < size + 1; i++) { // Clearing hashset for each number in temp. hs.Clear(); int x = temp[i]; // Finding number of digits of taken number int d1 = ( int )Math.Log10(temp[i]) + 1; int f = ( int )Math.Pow(10, d1 - 1); for (j = 1; j <= d1 - 1; j++) { // Remainder int r = x % 10; // Quotient int q = x / 10; // Forming new number by rotating. x = r * f + q; // Number of digits of newly formed rotated // number to avoid duplicate numbers. int d2 = ( int )Math.Log10(x) + 1; // Inserting formed rotated number to set s if (!hs.Contains(x)) { hs.Add(x); // Checking for number of digits of new // number. if ((d1 == d2)) { // Searching for the formed element // in rest of array. int position = Array.BinarySearch( temp, i + 1, size - i, x); // If position found if (position >= 0) { // Increment counter. count++; } } } } } // Return counter return count; } // Driver Code public static void Main(String[] args) { int [] a = { 32, 42, 13, 23, 9, 5, 31 }; int result = recycledPairs(a); Console.WriteLine(result); } } // This code is contributed by 29AjayKumar |
Javascript
// Function to find recycled pairs function recycledPairs(a) { var count = 1; // Sorting array a.sort( function (a, b) { return a - b;}); var n = a.length; // Removing duplicates by creating new array temp. var temp = Array(n).fill(0); temp.fill(-1); var j = 0; var i =0; for (i; i < n - 1; i++) { if (a[i] != a[i + 1]) { temp[j++] = a[i]; } } temp[j++] = a[n - 1]; var size = n; // Finding number of locations in temp // which are occupied from copying. for (i; i >= 0; i--) { if (temp[i] != -1) { size = i; break ; } } function binarySearch(arr, start, end, x) { // Iterate while start not meets end while (start<=end){ // Find the mid index let mid=Math.floor((start + end)/2); // If element is present at mid, return True if (arr[mid]===x) return mid; // Else look in left or right half accordingly else if (arr[mid] < x) start = mid + 1; else end = mid - 1; } return start; } // Hashset to store new Rotations var hs = new Set(); for (i; i < size + 1; i++) { // Clearing hashset for each number in temp. new Array(); var x = temp[i]; // Finding number of digits of taken number var d1 = parseInt(Math.log10(temp[i])) + 1; var f = parseInt(Math.pow(10,d1 - 1)); for (j = 1; j <= d1 - 1; j++) { // Remainder var r = x % 10; // Quotient var q = parseInt(x / 10); // Forming new number by rotating. x = r * f + q; // Number of digits of newly formed rotated number // to avoid duplicate numbers. var d2 = parseInt(Math.log10(x)) + 1; // Inserting formed rotated number to set s if (!hs.has(x)) { hs.add(x); // Checking for number of digits of new number. if ((d1 == d2)) { // Searching for the formed element in rest of array. var position = binarySearch(temp,i + 1,size + 1,x); // If position found if (position >= 0) { // Increment counter. count++; } } } } } // Return counter return count; } // Driver function var a = [32, 42, 13, 23, 9, 5, 31]; var result = recycledPairs(a); console.log(result); // This code is contributed by sourabhdall0001. |
Python3
import math # Function to find recycled pairs def recycled_pairs(a): count = 0 # Sorting array a.sort() # Removing duplicates by creating new list temp. temp = [] for i in range ( len (a) - 1 ): if a[i] ! = a[i + 1 ]: temp.append(a[i]) temp.append(a[ - 1 ]) size = len (temp) # Hashset to store new Rotations hs = set () for i in range (size): # Clearing hashset for each number in temp. hs.clear() x = temp[i] # Finding number of digits of taken number d1 = int (math.log10(temp[i])) + 1 f = pow ( 10 , d1 - 1 ) for j in range ( 1 , d1): # Remainder r = x % 10 # Quotient q = x / / 10 # Forming new number by rotating. x = r * f + q # Number of digits of newly formed rotated number # to avoid duplicate numbers. d2 = int (math.log10(x)) + 1 # Inserting formed rotated number to set s if x not in hs: hs.add(x) # Checking for number of digits of new number. if d1 = = d2: # Searching for the formed element in rest of array. position = i + 1 while position < size and temp[position] < x: position + = 1 # If position found if position < size and temp[position] = = x: # Increment counter. count + = 1 # Return counter return count # Driver function if __name__ = = '__main__' : a = [ 32 , 42 , 13 , 23 , 9 , 5 , 31 ] result = recycled_pairs(a) print (result) # Code is contributed by Siddharth Aher |
Output
2
Time Complexity : O(n*log(n)).
Note: For any given integer, the maximum number of rotations to form new numbers are fixed that is (no_of_digits-1). Hence, this operation is constant time that is O(1).
Please Login to comment...