Skip to content
Related Articles

Related Articles

Number of positions with Same address in row major and column major order

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 24 May, 2021

Given a 2D array of size M x N. Calculate count of positions in 2D array where address as per row-major order equals to address as per column-major order. 
Examples: 
 

Input : 3 5 
Output : 3 
Row major address is same as column major for following i, j 
pairs (1, 1), (2, 3) & (3, 5)
 

Input : 4 4 
Output : 4 
 

 

Let’s consider element with index i, j 
 

Row major address = B + w * (N * (i-1) + j-1) 
Column major address = B + w * (M * (j-1) + i-1) 

B: Base address of the array 
w: Size of each element of the array
 

Equating both addresses, we get
B + w * (N * (i-1) + j-1)  = B + w * (M * (j-1) + i-1)
N * (i-1) + j  = M * (j-1) + i
N*i - N + j  = M*j - M + i
M*j - j = N*i - N + M - i
(M-1) * j = N*i - N + M - i
j = (N*i - N + M - i)/(M-1)    - (Eq. 1)
Similarly
i = (M*j - M + N - j)/(N-1)    - (Eq. 2)

Now we have established a relation between i and j 
 

Iterate for all possible i and find corresponding j 
If j comes out to be an integer in the range 1 to N, 
increment the counter. 

Below is the implementation of above approach. 
 

C++




// CPP Program to count the number
// of positions with same address
// in row major and column major order
#include <bits/stdc++.h>
 
using namespace std;
 
// Returns count of required positions
int getCount(int M, int N)
{
    int count = 0;
 
    // horizontal 1D array
    if (M == 1)
        return N;
 
    // vertical 1D array
    if (N == 1)
        return M;
 
    if (N > M) {
 
        // iterating for all possible i
        for (int i = 1; i <= M; i++) {
            int numerator = N * i - N + M - i;
            int denominator = M - 1;
 
            // checking if j is integer
            if (numerator % denominator == 0) {
                int j = numerator / denominator;
 
                // checking if j lies b/w 1 to N
                if (j >= 1 && j <= N)
                    count++;
            }
        }
    }
    else {
 
        // iterating for all possible j
        for (int j = 1; j <= N; j++) {
            int numerator = M * j - M + N - j;
            int denominator = N - 1;
 
            // checking if i is integer
            if (numerator % denominator == 0) {
                int i = numerator / denominator;
 
                // checking if i lies b/w 1 to M
                if (i >= 1 && i <= M)
                    count++;
            }
        }
    }
    return count;
}
 
// Driver Code
int main()
{
    int M = 3, N = 5;
    cout << getCount(M, N) << endl;
    return 0;
}


Java




// Java Program to count the number
// of positions with same address
// in row major and column major order
import java.io.*;
class GFG {
 
// Returns count of
// required positions
static int getCount(int M, int N)
{
    int count = 0;
 
    // horizontal 1D array
    if (M == 1)
        return N;
 
    // vertical 1D array
    if (N == 1)
        return M;
 
    if (N > M) {
 
        // iterating for all possible i
        for (int i = 1; i <= M; i++) {
            int numerator = N * i - N + M - i;
            int denominator = M - 1;
 
            // checking if j is integer
            if (numerator % denominator == 0) {
                int j = numerator / denominator;
 
                // checking if j lies b/w 1 to N
                if (j >= 1 && j <= N)
                    count++;
            }
        }
    }
    else {
 
        // iterating for all possible j
        for (int j = 1; j <= N; j++) {
            int numerator = M * j - M + N - j;
            int denominator = N - 1;
 
            // checking if i is integer
            if (numerator % denominator == 0) {
                int i = numerator / denominator;
 
                // checking if i lies b/w 1 to M
                if (i >= 1 && i <= M)
                    count++;
            }
        }
    }
    return count;
}
 
    // Driver Code
    public static void main (String[] args)
    {
        int M = 3, N = 5;
        System.out.println( getCount(M, N));
    }
}
 
// This code is contributed by vt_m.


Python3




# Python3 Program to count the number
# of positions with same address
# in row major and column major order
 
# Returns count of
# required positions
def getCount(M, N):
    count = 0;
 
    # horizontal 1D array
    if (M == 1):
        return N;
 
    # vertical 1D array
    if (N == 1):
        return M;
 
    if (N > M):
 
        # iterating for all possible i
        for i in range(1, M + 1):
            numerator = N * i - N + M - i;
            denominator = M - 1;
 
            # checking if j is integer
            if (numerator % denominator == 0):
                j = numerator / denominator;
 
                # checking if j lies b/w 1 to N
                if (j >= 1 and j <= N):
                    count += 1;
    else:
 
        # iterating for all possible j
        for j in range(1, N + 1):
            numerator = M * j - M + N - j;
            denominator = N - 1;
 
            # checking if i is integer
            if (numerator % denominator == 0):
                i = numerator / denominator;
 
                # checking if i lies b/w 1 to M
                if (i >= 1 and i <= M):
                    count += 1;
 
    return count;
 
# Driver Code
if __name__ == '__main__':
    M, N = 3, 5;
    print(getCount(M, N));
 
# This code is contributed by Rajput-Ji


C#




// C# Program to count the number
// of positions with same address
// in row major and column major order
using System;
class GFG {
 
    // Returns count of
    // required positions
    static int getCount(int M, int N)
    {
        int count = 0;
     
        // horizontal 1D array
        if (M == 1)
            return N;
     
        // vertical 1D array
        if (N == 1)
            return M;
     
        if (N > M) {
     
            // iterating for all possible i
            for (int i = 1; i <= M; i++) {
                int numerator = N * i - N + M - i;
                int denominator = M - 1;
     
                // checking if j is integer
                if (numerator % denominator == 0) {
                    int j = numerator / denominator;
     
                    // checking if j lies b/w 1 to N
                    if (j >= 1 && j <= N)
                        count++;
                }
            }
        }
        else {
     
            // iterating for all possible j
            for (int j = 1; j <= N; j++) {
                int numerator = M * j - M + N - j;
                int denominator = N - 1;
     
                // checking if i is integer
                if (numerator % denominator == 0) {
                    int i = numerator / denominator;
     
                    // checking if i lies b/w 1 to M
                    if (i >= 1 && i <= M)
                        count++;
                }
            }
        }
        return count;
    }
 
    // Driver Code
    public static void Main ()
    {
        int M = 3, N = 5;
        Console.WriteLine( getCount(M, N));
    }
}
 
// This code is contributed by anuj_67.


PHP




<?php
// PHP Program to count the number
// of positions with same address
// in row major and column major order
 
// Returns count of required positions
function getCount( $M, $N)
{
    $count = 0;
 
    // horizontal 1D array
    if ($M == 1)
        return $N;
 
    // vertical 1D array
    if ($N == 1)
        return $M;
 
    if ($N > $M)
    {
 
        // iterating for all possible i
        for($i = 1; $i <= $M; $i++)
        {
            $numerator = $N * $i - $N + $M - $i;
            $denominator = $M - 1;
 
            // checking if j is integer
            if ($numerator % $denominator == 0)
            {
                $j = $numerator / $denominator;
 
                // checking if j lies b/w 1 to N
                if ($j >= 1 and $j <= $N)
                    $count++;
            }
        }
    }
    else
    {
 
        // iterating for all possible j
        for ( $j = 1; $j <= $N; $j++)
        {
            $numerator = $M * $j - $M + $N - $j;
            $denominator = $N - 1;
 
            // checking if i is integer
            if ($numerator % $denominator == 0)
            {
                $i = $numerator / $denominator;
 
                // checking if i lies b/w 1 to M
                if ($i >= 1 and $i <= $M)
                    $count++;
            }
        }
    }
    return $count;
}
 
    // Driver Code
    $M = 3; $N = 5;
    echo getCount($M, $N) ;
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
    // JavaScript Program to count the number
    // of positions with same address
    // in row major and column major order
     
    // Returns count of
    // required positions
    function getCount(M, N)
    {
        let count = 0;
       
        // horizontal 1D array
        if (M == 1)
            return N;
       
        // vertical 1D array
        if (N == 1)
            return M;
       
        if (N > M) {
       
            // iterating for all possible i
            for (let i = 1; i <= M; i++) {
                let numerator = N * i - N + M - i;
                let denominator = M - 1;
       
                // checking if j is integer
                if (numerator % denominator == 0) {
                    let j =
                    parseInt(numerator / denominator, 10);
       
                    // checking if j lies b/w 1 to N
                    if (j >= 1 && j <= N)
                        count++;
                }
            }
        }
        else {
       
            // iterating for all possible j
            for (let j = 1; j <= N; j++) {
                let numerator = M * j - M + N - j;
                let denominator = N - 1;
       
                // checking if i is integer
                if (numerator % denominator == 0) {
                    let i =
                    parseInt(numerator / denominator, 10);
       
                    // checking if i lies b/w 1 to M
                    if (i >= 1 && i <= M)
                        count++;
                }
            }
        }
        return count;
    }
     
    let M = 3, N = 5;
    document.write( getCount(M, N));
     
</script>


Output:  

3

Time Complexity: O(M) 
Complexity can be reduced to O(min(M, N)) by establishing relation of i in terms of j(Eq. 2) and iterating for all possible j in case N<M and by establishing relation j in terms of i(Eq. 1) and iterating for all possible i otherwise.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!