Number of quadrilateral formed with N distinct points on circumference of Circle
Given an integer N which denotes the points on the circumference of a circle, the task is to find the number of quadrilaterals formed using these points.
Examples:
Input: N = 5
Output: 5
Input: N = 10
Output: 210
Approach: The idea is to use permutation and combination to find the number of possible quadrilaterals using the N points on the circumference of the circle. The number of possible quadrilaterals will be .
Below is the implementation of the above approach:
C++
// C++ implementation to find the // number of quadrilaterals formed // with N distinct points #include<bits/stdc++.h> using namespace std; // Function to find the factorial // of the given number N int fact( int n) { int res = 1; // Loop to find the factorial // of the given number for ( int i = 2; i < n + 1; i++) res = res * i; return res; } // Function to find the number of // combinations in the N int nCr( int n, int r) { return (fact(n) / (fact(r) * fact(n - r))); } // Driver Code int main() { int n = 5; // Function Call cout << (nCr(n, 4)); } // This code is contributed by rock_cool |
Java
// Java implementation to find the // number of quadrilaterals formed // with N distinct points class GFG{ // Function to find the number of // combinations in the N static int nCr( int n, int r) { return (fact(n) / (fact(r) * fact(n - r))); } // Function to find the factorial // of the given number N static int fact( int n) { int res = 1 ; // Loop to find the factorial // of the given number for ( int i = 2 ; i < n + 1 ; i++) res = res * i; return res; } // Driver Code public static void main(String[] args) { int n = 5 ; // Function Call System.out.println(nCr(n, 4 )); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation to find the # number of quadrilaterals formed # with N distinct points # Function to find the number of # combinations in the N def nCr(n, r): return (fact(n) / (fact(r) * fact(n - r))) # Function to find the factorial # of the given number N def fact(n): res = 1 # Loop to find the factorial # of the given number for i in range ( 2 , n + 1 ): res = res * i return res # Driver Code if __name__ = = "__main__" : n = 5 # Function Call print ( int (nCr(n, 4 ))) |
C#
// C# implementation to find the // number of quadrilaterals formed // with N distinct points using System; class GFG{ // Function to find the number of // combinations in the N static int nCr( int n, int r) { return (fact(n) / (fact(r) * fact(n - r))); } // Function to find the factorial // of the given number N static int fact( int n) { int res = 1; // Loop to find the factorial // of the given number for ( int i = 2; i < n + 1; i++) res = res * i; return res; } // Driver Code public static void Main(String[] args) { int n = 5; // Function Call Console.Write(nCr(n, 4)); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // JavaScript implementation to find the // number of quadrilaterals formed // with N distinct points // Function to find the factorial // of the given number N function fact(n) { let res = 1; // Loop to find the factorial // of the given number for (let i = 2; i < n + 1; i++) res = res * i; return res; } // Function to find the number of // combinations in the N function nCr(n, r) { return (fact(n) / (fact(r) * fact(n - r))); } // Driver Code let n = 5; // Function Call document.write(nCr(n, 4)); // This code is contributed by Surbhi Tyagi. </script> |
Output:
5
Please Login to comment...