 Open in App
Not now

# Number of quadrilateral formed with N distinct points on circumference of Circle

• Last Updated : 15 Mar, 2021

Given an integer N which denotes the points on the circumference of a circle, the task is to find the number of quadrilaterals formed using these points.
Examples:

Input: N = 5
Output: 5
Input: N = 10
Output: 210

Approach: The idea is to use permutation and combination to find the number of possible quadrilaterals using the N points on the circumference of the circle. The number of possible quadrilaterals will be .
Below is the implementation of the above approach:

## C++

 `// C++ implementation to find the ` `// number of quadrilaterals formed` `// with N distinct points` `#include` `using` `namespace` `std;`   `// Function to find the factorial` `// of the given number N` `int` `fact(``int` `n)` `{` `    ``int` `res = 1;`   `    ``// Loop to find the factorial` `    ``// of the given number` `    ``for``(``int` `i = 2; i < n + 1; i++)` `       ``res = res * i;` `       `  `    ``return` `res;` `}`   `// Function to find the number of` `// combinations in the N` `int` `nCr(``int` `n, ``int` `r) ` `{` `    ``return` `(fact(n) / (fact(r) * ` `                       ``fact(n - r)));` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `n = 5;`   `    ``// Function Call` `    ``cout << (nCr(n, 4));` `}`   `// This code is contributed by rock_cool`

## Java

 `// Java implementation to find the ` `// number of quadrilaterals formed` `// with N distinct points` `class` `GFG{` `    `  `// Function to find the number of` `// combinations in the N` `static` `int` `nCr(``int` `n, ``int` `r) ` `{` `    ``return` `(fact(n) / (fact(r) * ` `                       ``fact(n - r)));` `}`   `// Function to find the factorial` `// of the given number N` `static` `int` `fact(``int` `n)` `{` `    ``int` `res = ``1``;`   `    ``// Loop to find the factorial` `    ``// of the given number` `    ``for``(``int` `i = ``2``; i < n + ``1``; i++)` `        ``res = res * i;` `    ``return` `res;` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    ``int` `n = ``5``;`   `    ``// Function Call` `    ``System.out.println(nCr(n, ``4``));` `}` `}`   `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 implementation to find the ` `# number of quadrilaterals formed` `# with N distinct points`   `# Function to find the number of ` `# combinations in the N` `def` `nCr(n, r): ` `    ``return` `(fact(n) ``/` `(fact(r) ` `                ``*` `fact(n ``-` `r))) `   `# Function to find the factorial ` `# of the given number N` `def` `fact(n): ` `    ``res ``=` `1` `    `  `    ``# Loop to find the factorial ` `    ``# of the given number` `    ``for` `i ``in` `range``(``2``, n ``+` `1``):` `        ``res ``=` `res ``*` `i     ` `    ``return` `res `   `# Driver Code` `if` `__name__ ``=``=` `"__main__"``:` `    ``n ``=` `5` `    `  `    ``# Function Call` `    ``print``(``int``(nCr(n, ``4``)))`

## C#

 `// C# implementation to find the ` `// number of quadrilaterals formed` `// with N distinct points` `using` `System;` `class` `GFG{` `    `  `// Function to find the number of` `// combinations in the N` `static` `int` `nCr(``int` `n, ``int` `r) ` `{` `    ``return` `(fact(n) / (fact(r) * ` `                       ``fact(n - r)));` `}`   `// Function to find the factorial` `// of the given number N` `static` `int` `fact(``int` `n)` `{` `    ``int` `res = 1;`   `    ``// Loop to find the factorial` `    ``// of the given number` `    ``for``(``int` `i = 2; i < n + 1; i++)` `        ``res = res * i;` `    ``return` `res;` `}`   `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` `    ``int` `n = 5;`   `    ``// Function Call` `    ``Console.Write(nCr(n, 4));` `}` `}`   `// This code is contributed by shivanisinghss2110`

## Javascript

 ``

Output:

`5`

My Personal Notes arrow_drop_up
Related Articles