Number of pairs whose product is a power of 2
Given an array arr[] consisting of N integers, the task is to count the total number of pairs of array elements from the given array such that arr[i] * arr[j] is the power of 2.
Examples:
Input: arr[] = {2, 4, 7, 2}
Output: 3
Explanation:
arr[0] * arr[1] = 8
arr[0] * arr[3] = 4
arr[1] * arr[3] = 8Input: arr[] = {8, 1, 12, 4, 2}
Output: 6
Approach: The idea is based upon the fact that a number is a power of 2 if it contains only 2 as its prime factor. Therefore, all its divisors are also a power of 2. Follow the steps below to solve the problem:
- Traverse the given array.
- For every array element, check if it is a power of 2 or not. Increase the count of such elements
- Finally, print (count * (count – 1)) / 2 as the required count.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count pairs having // product equal to a power of 2 int countPairs( int arr[], int N) { // Stores count of array elements // which are power of 2 int countPowerof2 = 0; for ( int i = 0; i < N; i++) { // If array element contains // only one set bit if (__builtin_popcount(arr[i]) == 1) // Increase count of // powers of 2 countPowerof2++; } // Count required number of pairs int desiredPairs = (countPowerof2 * (countPowerof2 - 1)) / 2; // Print the required number of pairs cout << desiredPairs << ' ' ; } // Driver Code int main() { // Given array int arr[4] = { 2, 4, 7, 2 }; // Size of the array int N = sizeof (arr) / sizeof (arr[0]); // Function Call countPairs(arr, N); return 0; } |
Java
// Java program for the // above approach import java.util.*; class GFG{ // Function to count pairs having // product equal to a power of 2 static void countPairs( int arr[], int N) { // Stores count of array elements // which are power of 2 int countPowerof2 = 0 ; for ( int i = 0 ; i < N; i++) { // If array element contains // only one set bit if (Integer.bitCount(arr[i]) == 1 ) // Increase count of // powers of 2 countPowerof2++; } // Count required number of pairs int desiredPairs = (countPowerof2 * (countPowerof2 - 1 )) / 2 ; // Print the required number of pairs System.out.print(desiredPairs + " " ); } // Driver Code public static void main(String[] args) { // Given array int arr[] = { 2 , 4 , 7 , 2 }; // Size of the array int N = arr.length; // Function Call countPairs(arr, N); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program for the above approach # Function to count pairs having # product equal to a power of 2 def countPairs(arr, N): # Stores count of array elements # which are power of 2 countPowerof2 = 0 for i in range (N): # If array element contains # only one set bit if ( bin (arr[i]).count( '1' ) = = 1 ): # Increase count of # powers of 2 countPowerof2 + = 1 # Count required number of pairs desiredPairs = (countPowerof2 * (countPowerof2 - 1 )) / / 2 # Print the required number of pairs print (desiredPairs) # Driver Code if __name__ = = '__main__' : # Given array arr = [ 2 , 4 , 7 , 2 ] # Size of the array N = len (arr) # Function call countPairs(arr, N) # This code is contributed by mohit kumar 29 |
C#
// C# program for the // above approach using System; using System.Linq; class GFG{ // Function to count pairs having // product equal to a power of 2 static void countPairs( int []arr, int N) { // Stores count of array elements // which are power of 2 int countPowerof2 = 0; for ( int i = 0; i < N; i++) { // If array element contains // only one set bit if ((Convert.ToString( arr[i], 2)).Count( f => (f == '1' )) == 1) // Increase count of // powers of 2 countPowerof2++; } // Count required number of pairs int desiredPairs = (countPowerof2 * (countPowerof2 - 1)) / 2; // Print the required number of pairs Console.WriteLine(desiredPairs + " " ); } // Driver Code public static void Main(String[] args) { // Given array int []arr = { 2, 4, 7, 2 }; // Size of the array int N = arr.Length; // Function call countPairs(arr, N); } } // This code is contributed by math_lover |
Javascript
<script> // Javascript program for the // above approach // Function to count pairs having // product equal to a power of 2 function countPairs(arr,N) { // Stores count of array elements // which are power of 2 let countPowerof2 = 0; for (let i = 0; i < N; i++) { // If array element contains // only one set bit if (Number(arr[i].toString(2).split( "" ).sort().join( "" )).toString().length == 1) // Increase count of // powers of 2 countPowerof2++; } // Count required number of pairs let desiredPairs = (countPowerof2 * (countPowerof2 - 1)) / 2; // Print the required number of pairs document.write(desiredPairs + " " ); } // Driver Code // Given array let arr=[2, 4, 7, 2]; // Size of the array let N = arr.length; // Function Call countPairs(arr, N); // This code is contributed by patel2127 </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(1)