Number of balanced parentheses substrings
Given a balanced parentheses string which consists of ‘(‘ and ‘)‘. The task is to find the number of balanced parentheses substrings in the given string
Examples :
Input : str = “()()()”
Output : 6
(), (), (), ()(), ()(), ()()()
Input : str = “(())()”
Output : 4
(), (()), (), (())()
Approach :
Let us assume that whenever we encounter with opening bracket the depth increases by one and with a closing bracket the depth decreases by one. Whenever we encounter the closing bracket increase our required answer by one and then increment our required answer by the already formed balanced substrings at this depth.
Below is the implementation of the above approach :
C++14
// CPP program to find number of // balanced parentheses sub strings #include <bits/stdc++.h> using namespace std; // Function to find number of // balanced parentheses sub strings int Balanced_Substring(string str, int n) { // To store required answer int ans = 0; // Vector to stores the number of // balanced brackets at each depth. vector< int > arr(n / 2 + 1, 0); // d stores checks the depth of our sequence // For example level of () is 1 // and that of (()) is 2. int d = 0; for ( int i = 0; i < n; i++) { // If open bracket // increase depth if (str[i] == '(' ) d++; // If closing bracket else { if (d == 1) { for ( int j = 2; j <= n / 2 + 1 && arr[j] != 0; j++) arr[j] = 0; } ++ans; ans += arr[d]; arr[d]++; d--; } } // Return the required answer return ans; } // Driver code int main() { string str = "()()()" ; int n = str.size(); // Function call cout << Balanced_Substring(str, n); return 0; } |
Java
// Java program to find number of // balanced parentheses sub strings class GFG { // Function to find number of // balanced parentheses sub strings public static int Balanced_Substring(String str, int n) { // To store required answer int ans = 0 ; // Vector to stores the number of // balanced brackets at each depth. int [] arr = new int [n / 2 + 1 ]; // d stores checks the depth of our sequence // For example level of () is 1 // and that of (()) is 2. int d = 0 ; for ( int i = 0 ; i < n; i++) { // If open bracket // increase depth if (str.charAt(i) == '(' ) d++; // If closing bracket else { if (d == 1 ) { for ( int j = 2 ; j <= n / 2 + 1 && arr[j] != 0 ; j++) arr[j] = 0 ; } ++ans; ans += arr[d]; arr[d]++; d--; } } // Return the required answer return ans; } // Driver code public static void main(String[] args) { String str = "()()()" ; int n = str.length(); // Function call System.out.println(Balanced_Substring(str, n)); } } // This code is contributed by // sanjeev2552 |
Python3
# Python3 program to find number of # balanced parentheses sub strings # Function to find number of # balanced parentheses sub strings def Balanced_Substring(s, n): # To store required answer ans = 0 # Vector to stores the number of # balanced brackets at each depth. arr = [ 0 ] * ( int (n / 2 ) + 1 ) # d stores checks the depth of our sequence # For example level of () is 1 # and that of (()) is 2. d = 0 for i in range (n): # If open bracket # increase depth if (s[i] = = '(' ): d + = 1 # If closing bracket else : if (d = = 1 ): j = 2 while (j < = n / / 2 + 1 and arr[j] ! = 0 ): arr[j] = 0 j + = 1 ans + = 1 ans + = arr[d] arr[d] + = 1 d - = 1 # Return the required answer return ans # Driver code s = "()()()" n = len (s) # Function call print (Balanced_Substring(s, n)) # This code contributed by Rajput-Ji |
C#
// C# program to find number of // balanced parentheses sub strings using System; class GFG { // Function to find number of // balanced parentheses sub strings public static int Balanced_Substring(String str, int n) { // To store required answer int ans = 0; // Vector to stores the number of // balanced brackets at each depth. int [] arr = new int [n / 2 + 1]; // d stores checks the depth of our sequence // For example level of () is 1 // and that of (()) is 2. int d = 0; for ( int i = 0; i < n; i++) { // If open bracket // increase depth if (str[i] == '(' ) d++; // If closing bracket else { if (d == 1) { for ( int j = 2; j <= n / 2 + 1 && arr[j] != 0; j++) arr[j] = 0; } ++ans; ans += arr[d]; arr[d]++; d--; } } // Return the required answer return ans; } // Driver code public static void Main(String[] args) { String str = "()()()" ; int n = str.Length; // Function call Console.WriteLine(Balanced_Substring(str, n)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program to find number of // balanced parentheses sub strings // Function to find number of // balanced parentheses sub strings function Balanced_Substring(str, n) { // To store required answer let ans = 0; // Vector to stores the number of // balanced brackets at each depth. let arr = new Array(n / 2 + 1).fill(0); // d stores checks the depth of our sequence // For example level of () is 1 // and that of (()) is 2. let d = 0; for (let i = 0; i < n; i++) { // If open bracket // increase depth if (str[i] == '(' ) d++; // If closing bracket else { if (d == 1) { for (let j = 2; j <= parseInt(n / 2) + 1 && arr[j] != 0; j++) arr[j] = 0; } ++ans; ans += arr[d]; arr[d]++; d--; } } // Return the required answer return ans; } // Driver code let str = "()()()" ; let n = str.length; // Function call document.write(Balanced_Substring(str, n)); </script> |
Output:
6
Time complexity : O(N)
Auxiliary Space: O(N)
Please Login to comment...