Number of cells a queen can move with obstacles on the chessboard
Consider a N X N chessboard with a Queen and K obstacles. The Queen cannot pass through obstacles. Given the position (x, y) of Queen, the task is to find the number of cells the queen can move.
Examples:
Input : N = 8, x = 4, y = 4, K = 0 Output : 27
Input : N = 8, x = 4, y = 4, K = 1, kx1 = 3, ky1 = 5 Output : 24
Method 1:
The idea is to iterate over the cells the queen can attack and stop until there is an obstacle or end of the board. To do that, we need to iterate horizontally, vertically and diagonally. The moves from position (x, y) can be:
(x+1, y): one step horizontal move to the right. (x-1, y): one step horizontal move to the left. (x+1, y+1): one step diagonal move up-right. (x-1, y-1): one step diagonal move down-left. (x-1, y+1): one step diagonal move left-up. (x+1, y-1): one step diagonal move right-down. (x, y+1): one step downward. (x, y-1): one step upward.
Below is C++ implementation of this approach:
C++
// C++ program to find number of cells a queen can move // with obstacles on the chessboard #include<bits/stdc++.h> using namespace std; // Return if position is valid on chessboard int range( int n, int x, int y) { return (x <= n && x > 0 && y <= n && y > 0); } // Return the number of moves with a given direction int check( int n, int x, int y, int xx, int yy, map <pair< int , int >, int > mp) { int ans = 0; // Checking valid move of Queen in a direction. while (range(n, x, y) && ! mp[{x, y}]) { x += xx; y += yy; ans++; } return ans; } // Return the number of position a Queen can move. int numberofPosition( int n, int k, int x, int y, int obstPosx[], int obstPosy[]) { int x1, y1, ans = 0; map <pair< int , int >, int > mp; // Mapping each obstacle's position while (k--) { x1 = obstPosx[k]; y1 = obstPosy[k]; mp[{x1, y1}] = 1; } // Fetching number of position a queen can // move in each direction. ans += check(n, x + 1, y, 1, 0, mp); ans += check(n, x-1, y, -1, 0, mp); ans += check(n, x, y + 1, 0, 1, mp); ans += check(n, x, y-1, 0, -1, mp); ans += check(n, x + 1, y + 1, 1, 1, mp); ans += check(n, x + 1, y-1, 1, -1, mp); ans += check(n, x-1, y + 1, -1, 1, mp); ans += check(n, x-1, y-1, -1, -1, mp); return ans; } // Driven Program int main() { int n = 8; // Chessboard size int k = 1; // Number of obstacles int Qposx = 4; // Queen x position int Qposy = 4; // Queen y position int obstPosx[] = { 3 }; // x position of obstacles int obstPosy[] = { 5 }; // y position of obstacles cout << numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy) << endl; return 0; } |
Java
// Java program to find number of cells a queen can move // with obstacles on the chessboard import java.util.*; class GFG{ static class pair { int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Return if position is valid on chessboard static boolean range( int n, int x, int y) { return (x <= n && x > 0 && y <= n && y > 0 ); } // Return the number of moves with a given direction static int check( int n, int x, int y, int xx, int yy, HashMap <pair, Integer> mp) { int ans = 0 ; // Checking valid move of Queen in a direction. while (range(n, x, y) && ! mp.containsKey( new pair(x, y))) { x += xx; y += yy; ans++; } return ans; } // Return the number of position a Queen can move. static int numberofPosition( int n, int k, int x, int y, int obstPosx[], int obstPosy[]) { int x1, y1, ans = 0 ; HashMap <pair, Integer> mp = new HashMap<>(); // Mapping each obstacle's position while (k> 0 ) { k--; x1 = obstPosx[k]; y1 = obstPosy[k]; mp.put( new pair(x1, y1), 1 ); } // Fetching number of position a queen can // move in each direction. ans += check(n, x + 1 , y, 1 , 0 , mp); ans += check(n, x- 1 , y, - 1 , 0 , mp); ans += check(n, x, y + 1 , 0 , 1 , mp); ans += check(n, x, y- 1 , 0 , - 1 , mp); ans += check(n, x + 1 , y + 1 , 1 , 1 , mp); ans += check(n, x + 1 , y- 1 , 1 , - 1 , mp); ans += check(n, x- 1 , y + 1 , - 1 , 1 , mp); return ans; } // Driven Program public static void main(String[] args) { int n = 8 ; // Chessboard size int k = 1 ; // Number of obstacles int Qposx = 4 ; // Queen x position int Qposy = 4 ; // Queen y position int obstPosx[] = { 3 }; // x position of obstacles int obstPosy[] = { 5 }; // y position of obstacles System.out.print(numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy) + "\n" ); } } // This code contributed by Rajput-Ji |
Python3
# Python program to find number of cells a queen can move # with obstacles on the chessboard class pair : def __init__( self , first, second): self .first = first self .second = second # Return if position is valid on chessboard def range (n , x , y): return (x < = n and x > 0 and y < = n and y > 0 ) # Return the number of moves with a given direction def check(n , x , y , xx , yy, mp): ans = 0 # Checking valid move of Queen in a direction. while range (n, x, y) and pair(x, y) not in mp : x + = xx y + = yy ans = ans + 1 return ans # Return the number of position a Queen can move. def numberofPosition(n , k , x , y , obstPosx , obstPosy): ans = 0 mp = {} # Mapping each obstacle's position while (k > 0 ): k - = 1 x1 = obstPosx[k] y1 = obstPosy[k] mp[pair(x1, y1)] = 1 # Fetching number of position a queen can # move in each direction. ans + = check(n, x + 1 , y, 1 , 0 , mp) ans + = check(n, x - 1 , y, - 1 , 0 , mp) ans + = check(n, x, y + 1 , 0 , 1 , mp) ans + = check(n, x, y - 1 , 0 , - 1 , mp) ans + = check(n, x + 1 , y + 1 , 1 , 1 , mp) ans + = check(n, x + 1 , y - 1 , 1 , - 1 , mp) ans + = check(n, x - 1 , y + 1 , - 1 , 1 , mp) return ans # Driven Program n = 8 # Chessboard size k = 1 # Number of obstacles Qposx = 4 # Queen x position Qposy = 4 # Queen y position obstPosx = [ 3 ] # x position of obstacles obstPosy = [ 5 ] # y position of obstacles print (numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy)) # This code is contributed by shinjanpatra |
C#
// C# program to find number of cells a queen can move // with obstacles on the chessboard using System; using System.Collections.Generic; public class GFG{ public class pair { public int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Return if position is valid on chessboard static bool range( int n, int x, int y) { return (x <= n && x > 0 && y <= n && y > 0); } // Return the number of moves with a given direction static int check( int n, int x, int y, int xx, int yy, Dictionary <pair, int > mp) { int ans = 0; // Checking valid move of Queen in a direction. while (range(n, x, y) && ! mp.ContainsKey( new pair(x, y))) { x += xx; y += yy; ans++; } return ans; } // Return the number of position a Queen can move. static int numberofPosition( int n, int k, int x, int y, int []obstPosx, int []obstPosy) { int x1, y1, ans = 0; Dictionary <pair, int > mp = new Dictionary<pair, int >(); // Mapping each obstacle's position while (k>0) { k--; x1 = obstPosx[k]; y1 = obstPosy[k]; mp.Add( new pair(x1, y1), 1); } // Fetching number of position a queen can // move in each direction. ans += check(n, x + 1, y, 1, 0, mp); ans += check(n, x-1, y, -1, 0, mp); ans += check(n, x, y + 1, 0, 1, mp); ans += check(n, x, y-1, 0, -1, mp); ans += check(n, x + 1, y + 1, 1, 1, mp); ans += check(n, x + 1, y-1, 1, -1, mp); ans += check(n, x-1, y + 1, -1, 1, mp); return ans; } // Driven Program public static void Main(String[] args) { int n = 8; // Chessboard size int k = 1; // Number of obstacles int Qposx = 4; // Queen x position int Qposy = 4; // Queen y position int []obstPosx = { 3 }; // x position of obstacles int []obstPosy = { 5 }; // y position of obstacles Console.Write(numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy) + "\n" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // javascript program to find number of cells a queen can move // with obstacles on the chessboard class pair { constructor(first , second) { this .first = first; this .second = second; } } // Return if position is valid on chessboard function range(n , x , y) { return (x <= n && x > 0 && y <= n && y > 0); } // Return the number of moves with a given direction function check(n , x , y , xx , yy, mp) { var ans = 0; // Checking valid move of Queen in a direction. while (range(n, x, y) && !mp.has( new pair(x, y))) { x += xx; y += yy; ans++; } return ans; } // Return the number of position a Queen can move. function numberofPosition(n , k , x , y , obstPosx , obstPosy) { var x1, y1, ans = 0; var mp = new Map(); // Mapping each obstacle's position while (k > 0) { k--; x1 = obstPosx[k]; y1 = obstPosy[k]; mp.set( new pair(x1, y1), 1); } // Fetching number of position a queen can // move in each direction. ans += check(n, x + 1, y, 1, 0, mp); ans += check(n, x - 1, y, -1, 0, mp); ans += check(n, x, y + 1, 0, 1, mp); ans += check(n, x, y - 1, 0, -1, mp); ans += check(n, x + 1, y + 1, 1, 1, mp); ans += check(n, x + 1, y - 1, 1, -1, mp); ans += check(n, x - 1, y + 1, -1, 1, mp); return ans; } // Driven Program var n = 8; // Chessboard size var k = 1; // Number of obstacles var Qposx = 4; // Queen x position var Qposy = 4; // Queen y position var obstPosx = [ 3 ]; // x position of obstacles var obstPosy = [ 5 ]; // y position of obstacles document.write(numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy) + "\n" ); // This code is contributed by Rajput-Ji </script> |
24
Time Complexity: O(n2)
Auxiliary Space: O(n)
Method 2:
The idea is to iterate over the obstacles and for those who are in the queen’s path, we calculate the free cells upto that obstacle. If there is no obstacle in the path we have to calculate the number of free cells upto end of board in that direction.
For any (x1, y1) and (x2, y2):
- If they are horizontally at same level: abs(x1 – x2 – 1)
- If they are vertically at same level: abs(y1 – y2 – 1) is the number of free cells between.
- If they are diagonal: both abs(x1 – x2 – 1) or abs(y1 – y2 – 1) is the number of free cells between.
Below is the implementation of this approach:
C++
// C++ program to find number of cells a queen can move // with obstacles on the chessborad #include <bits/stdc++.h> using namespace std; // Return the number of position a Queen can move. int numberofPosition( int n, int k, int x, int y, int obstPosx[], int obstPosy[]) { // d11, d12, d21, d22 are for diagonal distances. // r1, r2 are for vertical distance. // c1, c2 are for horizontal distance. int d11, d12, d21, d22, r1, r2, c1, c2; // Initialise the distance to end of the board. d11 = min( x-1, y-1 ); d12 = min( n-x, n-y ); d21 = min( n-x, y-1 ); d22 = min( x-1, n-y ); r1 = y-1; r2 = n-y; c1 = x-1; c2 = n-x; // For each obstacle find the minimum distance. // If obstacle is present in any direction, // distance will be updated. for ( int i = 0; i < k; i++) { if ( x > obstPosx[i] && y > obstPosy[i] && x-obstPosx[i] == y-obstPosy[i] ) d11 = min(d11, x-obstPosx[i]-1); if ( obstPosx[i] > x && obstPosy[i] > y && obstPosx[i]-x == obstPosy[i]-y ) d12 = min( d12, obstPosx[i]-x-1); if ( obstPosx[i] > x && y > obstPosy[i] && obstPosx[i]-x == y-obstPosy[i] ) d21 = min(d21, obstPosx[i]-x-1); if ( x > obstPosx[i] && obstPosy[i] > y && x-obstPosx[i] == obstPosy[i]-y ) d22 = min(d22, x-obstPosx[i]-1); if ( x == obstPosx[i] && obstPosy[i] < y ) r1 = min(r1, y-obstPosy[i]-1); if ( x == obstPosx[i] && obstPosy[i] > y ) r2 = min(r2, obstPosy[i]-y-1); if ( y == obstPosy[i] && obstPosx[i] < x ) c1 = min(c1, x-obstPosx[i]-1); if ( y == obstPosy[i] && obstPosx[i] > x ) c2 = min(c2, obstPosx[i]-x-1); } return d11 + d12 + d21 + d22 + r1 + r2 + c1 + c2; } // Driver code int main( void ) { int n = 8; // Chessboard size int k = 1; // number of obstacles int Qposx = 4; // Queen x position int Qposy = 4; // Queen y position int obstPosx[] = { 3 }; // x position of obstacles int obstPosy[] = { 5 }; // y position of obstacles cout << numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy); return 0; } |
Java
// Java program to find number of cells a // queen can move with obstacles on the // chessborad import java.io.*; class GFG { // Return the number of position a Queen // can move. static int numberofPosition( int n, int k, int x, int y, int obstPosx[], int obstPosy[]) { // d11, d12, d21, d22 are for diagonal distances. // r1, r2 are for vertical distance. // c1, c2 are for horizontal distance. int d11, d12, d21, d22, r1, r2, c1, c2; // Initialise the distance to end of the board. d11 = Math.min( x- 1 , y- 1 ); d12 = Math.min( n-x, n-y ); d21 = Math.min( n-x, y- 1 ); d22 = Math.min( x- 1 , n-y ); r1 = y- 1 ; r2 = n-y; c1 = x- 1 ; c2 = n-x; // For each obstacle find the minimum distance. // If obstacle is present in any direction, // distance will be updated. for ( int i = 0 ; i < k; i++) { if ( x > obstPosx[i] && y > obstPosy[i] && x-obstPosx[i] == y-obstPosy[i] ) d11 = Math.min(d11, x-obstPosx[i]- 1 ); if ( obstPosx[i] > x && obstPosy[i] > y && obstPosx[i]-x == obstPosy[i]-y ) d12 = Math.min( d12, obstPosx[i]-x- 1 ); if ( obstPosx[i] > x && y > obstPosy[i] && obstPosx[i]-x == y-obstPosy[i] ) d21 = Math.min(d21, obstPosx[i]-x- 1 ); if ( x > obstPosx[i] && obstPosy[i] > y && x-obstPosx[i] == obstPosy[i]-y ) d22 = Math.min(d22, x-obstPosx[i]- 1 ); if ( x == obstPosx[i] && obstPosy[i] < y ) r1 = Math.min(r1, y-obstPosy[i]- 1 ); if ( x == obstPosx[i] && obstPosy[i] > y ) r2 = Math.min(r2, obstPosy[i]-y- 1 ); if ( y == obstPosy[i] && obstPosx[i] < x ) c1 = Math.min(c1, x-obstPosx[i]- 1 ); if ( y == obstPosy[i] && obstPosx[i] > x ) c2 = Math.min(c2, obstPosx[i]-x- 1 ); } return d11 + d12 + d21 + d22 + r1 + r2 + c1 + c2; } // Driver code public static void main (String[] args) { int n = 8 ; // Chessboard size int k = 1 ; // number of obstacles int Qposx = 4 ; // Queen x position int Qposy = 4 ; // Queen y position int obstPosx[] = { 3 }; // x position of obstacles int obstPosy[] = { 5 }; // y position of obstacles System.out.println(numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy)); } } // This code is contributed by anuj_67. |
Python3
# Python program to find number of cells a # queen can move with obstacles on the # chessborad # Return the number of position a Queen # can move. def numberofPosition(n, k, x, y, obstPosx, obstPosy): # d11, d12, d21, d22 are for diagonal distances. # r1, r2 are for vertical distance. # c1, c2 are for horizontal distance. # Initialise the distance to end of the board. d11 = min (x - 1 , y - 1 ); d12 = min (n - x, n - y); d21 = min (n - x, y - 1 ); d22 = min (x - 1 , n - y); r1 = y - 1 ; r2 = n - y; c1 = x - 1 ; c2 = n - x; # For each obstacle find the minimum distance. # If obstacle is present in any direction, # distance will be updated. for i in range (k): if (x > obstPosx[i] and y > obstPosy[i] and x - obstPosx[i] = = y - obstPosy[i]): d11 = min (d11, x - obstPosx[i] - 1 ); if (obstPosx[i] > x and obstPosy[i] > y and obstPosx[i] - x = = obstPosy[i] - y): d12 = min (d12, obstPosx[i] - x - 1 ); if (obstPosx[i] > x and y > obstPosy[i] and obstPosx[i] - x = = y - obstPosy[i]): d21 = min (d21, obstPosx[i] - x - 1 ); if (x > obstPosx[i] and obstPosy[i] > y and x - obstPosx[i] = = obstPosy[i] - y): d22 = min (d22, x - obstPosx[i] - 1 ); if (x = = obstPosx[i] and obstPosy[i] < y): r1 = min (r1, y - obstPosy[i] - 1 ); if (x = = obstPosx[i] and obstPosy[i] > y): r2 = min (r2, obstPosy[i] - y - 1 ); if (y = = obstPosy[i] and obstPosx[i] < x): c1 = min (c1, x - obstPosx[i] - 1 ); if (y = = obstPosy[i] and obstPosx[i] > x): c2 = min (c2, obstPosx[i] - x - 1 ); return d11 + d12 + d21 + d22 + r1 + r2 + c1 + c2; # Driver code if __name__ = = '__main__' : n = 8 ; # Chessboard size k = 1 ; # number of obstacles Qposx = 4 ; # Queen x position Qposy = 4 ; # Queen y position obstPosx = [ 3 ] ; # x position of obstacles obstPosy = [ 5 ]; # y position of obstacles print (numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy)); # This code is contributed by Rajput-Ji |
C#
// C# program to find number of cells a // queen can move with obstacles on the // chessborad using System; class GFG { // Return the number of position a Queen // can move. static int numberofPosition( int n, int k, int x, int y, int []obstPosx, int []obstPosy) { // d11, d12, d21, d22 are for diagonal distances. // r1, r2 are for vertical distance. // c1, c2 are for horizontal distance. int d11, d12, d21, d22, r1, r2, c1, c2; // Initialise the distance to end of the board. d11 = Math.Min( x- 1 , y- 1 ); d12 = Math.Min( n-x, n-y ); d21 = Math.Min( n-x, y- 1 ); d22 = Math.Min( x- 1 , n-y ); r1 = y- 1 ; r2 = n-y; c1 = x- 1 ; c2 = n-x; // For each obstacle find the Minimum distance. // If obstacle is present in any direction, // distance will be updated. for ( int i = 0 ; i < k; i++) { if ( x > obstPosx[i] && y > obstPosy[i] && x-obstPosx[i] == y-obstPosy[i] ) d11 = Math.Min(d11, x-obstPosx[i]- 1 ); if ( obstPosx[i] > x && obstPosy[i] > y && obstPosx[i]-x == obstPosy[i]-y ) d12 = Math.Min( d12, obstPosx[i]-x- 1 ); if ( obstPosx[i] > x && y > obstPosy[i] && obstPosx[i]-x == y-obstPosy[i] ) d21 = Math.Min(d21, obstPosx[i]-x- 1 ); if ( x > obstPosx[i] && obstPosy[i] > y && x-obstPosx[i] == obstPosy[i]-y) d22 = Math.Min(d22, x-obstPosx[i]- 1 ); if ( x == obstPosx[i] && obstPosy[i] < y ) r1 = Math.Min(r1, y-obstPosy[i]- 1 ); if ( x == obstPosx[i] && obstPosy[i] > y ) r2 = Math.Min(r2, obstPosy[i]-y- 1 ); if ( y == obstPosy[i] && obstPosx[i] < x ) c1 = Math.Min(c1, x-obstPosx[i]- 1 ); if ( y == obstPosy[i] && obstPosx[i] > x ) c2 = Math.Min(c2, obstPosx[i]-x- 1 ); } return d11 + d12 + d21 + d22 + r1 + r2 + c1 + c2; } // Driver code public static void Main () { int n = 8 ; // Chessboard size int k = 1 ; // number of obstacles int Qposx = 4 ; // Queen x position int Qposy = 4 ; // Queen y position int []obstPosx = { 3 }; // x position of obstacles int []obstPosy = { 5 }; // y position of obstacles Console.WriteLine(numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy)); } } // This code is contributed by anuj_67. |
PHP
<?php //PHP program to find number of cells a queen can move // with obstacles on the chessborad // Return the number of position a Queen can move. function numberofPosition( $n , $k , $x , $y , $obstPosx , $obstPosy ) { // d11, d12, d21, d22 are for diagonal distances. // r1, r2 are for vertical distance. // c1, c2 are for horizontal distance. $d11 ; $d12 ; $d21 ; $d22 ; $r1 ; $r2 ; $c1 ; $c2 ; // Initialise the distance to end of the board. $d11 = min( $x -1, $y -1 ); $d12 = min( $n - $x , $n - $y ); $d21 = min( $n - $x , $y -1 ); $d22 = min( $x -1, $n - $y ); $r1 = $y -1; $r2 = $n - $y ; $c1 = $x -1; $c2 = $n - $x ; // For each obstacle find the minimum distance. // If obstacle is present in any direction, // distance will be updated. for ( $i = 0; $i < $k ; $i ++) { if ( $x > $obstPosx [ $i ] && $y > $obstPosy [ $i ] && $x - $obstPosx [ $i ] == $y - $obstPosy [ $i ] ) $d11 = min( $d11 , $x - $obstPosx [ $i ]-1); if ( $obstPosx [ $i ] > $x && $obstPosy [ $i ] > $y && $obstPosx [ $i ]- $x == $obstPosy [ $i ]- $y ) $d12 = min( $d12 , $obstPosx [ $i ]- $x -1); if ( $obstPosx [ $i ] > $x && $y > $obstPosy [ $i ] && $obstPosx [ $i ]- $x == $y - $obstPosy [ $i ] ) $d21 = min( $d21 , $obstPosx [ $i ]- $x -1); if ( $x > $obstPosx [ $i ] && $obstPosy [ $i ] > $y && $x - $obstPosx [ $i ] == $obstPosy [ $i ]- $y ) $d22 = min( $d22 , $x - $obstPosx [ $i ]-1); if ( $x == $obstPosx [ $i ] && $obstPosy [ $i ] < $y ) $r1 = min( $r1 , $y - $obstPosy [ $i ]-1); if ( $x == $obstPosx [ $i ] && $obstPosy [ $i ] > $y ) $r2 = min( $r2 , $obstPosy [ $i ]- $y -1); if ( $y == $obstPosy [ $i ] && $obstPosx [ $i ] < $x ) $c1 = min( $c1 , $x - $obstPosx [ $i ]-1); if ( $y == $obstPosy [ $i ] && $obstPosx [ $i ] > $x ) $c2 = min( $c2 , $obstPosx [ $i ]- $x -1); } return $d11 + $d12 + $d21 + $d22 + $r1 + $r2 + $c1 + $c2 ; } // Driver code $n = 8; // Chessboard size $k = 1; // number of obstacles $Qposx = 4; // Queen x position $Qposy = 4; // Queen y position $obstPosx = array (3 ); // x position of obstacles $obstPosy = array (5 ); // y position of obstacles echo numberofPosition( $n , $k , $Qposx , $Qposy , $obstPosx , $obstPosy ); // This code is contributed by ajit. ?> |
Javascript
<script> // Javascript program to find number of cells a queen // can move with obstacles on the chessborad // Return the number of position a Queen can move. function numberofPosition( n, k, x, y, obstPosx, obstPosy) { // d11, d12, d21, d22 are for diagonal distances. // r1, r2 are for vertical distance. // c1, c2 are for horizontal distance. let d11, d12, d21, d22, r1, r2, c1, c2; // Initialise the distance to end of the board. d11 = Math.min( x-1, y-1 ); d12 = Math.min( n-x, n-y ); d21 = Math.min( n-x, y-1 ); d22 = Math.min( x-1, n-y ); r1 = y-1; r2 = n-y; c1 = x-1; c2 = n-x; // For each obstacle find the minimum distance. // If obstacle is present in any direction, // distance will be updated. for (let i = 0; i < k; i++) { if ( x > obstPosx[i] && y > obstPosy[i] && x-obstPosx[i] == y-obstPosy[i] ) d11 = Math.min(d11, x-obstPosx[i]-1); if ( obstPosx[i] > x && obstPosy[i] > y && obstPosx[i]-x == obstPosy[i]-y ) d12 = Math.min( d12, obstPosx[i]-x-1); if ( obstPosx[i] > x && y > obstPosy[i] && obstPosx[i]-x == y-obstPosy[i] ) d21 = Math.min(d21, obstPosx[i]-x-1); if ( x > obstPosx[i] && obstPosy[i] > y && x-obstPosx[i] == obstPosy[i]-y ) d22 = Math.min(d22, x-obstPosx[i]-1); if ( x == obstPosx[i] && obstPosy[i] < y ) r1 = min(r1, y-obstPosy[i]-1); if ( x == obstPosx[i] && obstPosy[i] > y ) r2 = Math.min(r2, obstPosy[i]-y-1); if ( y == obstPosy[i] && obstPosx[i] < x ) c1 = Math.min(c1, x-obstPosx[i]-1); if ( y == obstPosy[i] && obstPosx[i] > x ) c2 = Math.min(c2, obstPosx[i]-x-1); } return d11 + d12 + d21 + d22 + r1 + r2 + c1 + c2; } // Driver Code let n = 8; // Chessboard size let k = 1; // number of obstacles let Qposx = 4; // Queen x position let Qposy = 4; // Queen y position let obstPosx = [ 3 ]; // x position of obstacles let obstPosy = [ 5 ]; // y position of obstacles document.write(numberofPosition(n, k, Qposx, Qposy, obstPosx, obstPosy)); </script> |
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by Aarti Rathi and Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...