N’th palindrome of K digits
Given two integers n and k, Find the lexicographical nth palindrome of k digits.
Examples:
Input : n = 5, k = 4 Output : 1441 Explanation: 4 digit lexicographical palindromes are: 1001, 1111, 1221, 1331, 1441 5th palindrome = 1441 Input : n = 4, k = 6 Output : 103301
Naive Approach
A brute force is to run a loop from the smallest kth digit number and check for every number whether it is palindrome or not. If it is a palindrome number then decrements the value of k. Therefore the loop runs until k becomes exhausted.
C++
// A naive approach of C++ program of finding nth // palindrome of k digit #include<bits/stdc++.h> using namespace std; // Utility function to reverse the number n int reverseNum( int n) { int rem, rev=0; while (n) { rem = n % 10; rev = rev * 10 + rem; n /= 10; } return rev; } // Boolean Function to check for palindromic // number bool isPalindrom( int num) { return num == reverseNum(num); } // Function for finding nth palindrome of k digits int nthPalindrome( int n, int k) { // Get the smallest k digit number int num = ( int ) pow (10, k-1); while ( true ) { // check the number is palindrome or not if (isPalindrom(num)) --n; // if n'th palindrome found break the loop if (!n) break ; // Increment number for checking next palindrome ++num; } return num; } // Driver code int main() { int n = 6, k = 5; printf ( "%dth palindrome of %d digit = %d\n" , n, k, nthPalindrome(n, k)); n = 10, k = 6; printf ( "%dth palindrome of %d digit = %d" , n, k, nthPalindrome(n, k)); return 0; } |
Java
// A naive approach of Java program of finding nth // palindrome of k digit import java.util.*; class GFG { // Utility function to reverse the number n static int reverseNum( int n) { int rem, rev = 0 ; while (n > 0 ) { rem = n % 10 ; rev = rev * 10 + rem; n /= 10 ; } return rev; } // Boolean Function to check for palindromic // number static boolean isPalindrom( int num) { return num == reverseNum(num); } // Function for finding nth palindrome of k digits static int nthPalindrome( int n, int k) { // Get the smallest k digit number int num = ( int )Math.pow( 10 , k- 1 ); while ( true ) { // check the number is palindrome or not if (isPalindrom(num)) --n; // if n'th palindrome found break the loop if (n == 0 ) break ; // Increment number for checking next palindrome ++num; } return num; } // Driver code public static void main(String[] args) { int n = 6 , k = 5 ; System.out.println(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k)); n = 10 ; k = 6 ; System.out.println(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k)); } } // This code is contributed by mits |
Python3
# A naive approach of Python3 program # of finding nth palindrome of k digit import math; # Utility function to # reverse the number n def reverseNum(n): rev = 0 ; while (n): rem = n % 10 ; rev = (rev * 10 ) + rem; n = int (n / 10 ); return rev; # Boolean Function to check for # palindromic number def isPalindrom(num): return num = = reverseNum(num); # Function for finding nth # palindrome of k digits def nthPalindrome(n, k): # Get the smallest k digit number num = math. pow ( 10 , k - 1 ); while ( True ): # check the number is # palindrome or not if (isPalindrom(num)): n - = 1 ; # if n'th palindrome found # break the loop if ( not n): break ; # Increment number for checking # next palindrome num + = 1 ; return int (num); # Driver code n = 6 ; k = 5 ; print (n, "th palindrome of" ,k, "digit =" ,nthPalindrome(n, k)); n = 10 ; k = 6 ; print (n, "th palindrome of" ,k, "digit =" ,nthPalindrome(n, k)); # This code is contributed by mits |
C#
// A naive approach of C# program of finding nth // palindrome of k digit using System; class GFG { // Utility function to reverse the number n static int reverseNum( int n) { int rem, rev = 0; while (n > 0) { rem = n % 10; rev = rev * 10 + rem; n /= 10; } return rev; } // Boolean Function to check for palindromic // number static bool isPalindrom( int num) { return num == reverseNum(num); } // Function for finding nth palindrome of k digits static int nthPalindrome( int n, int k) { // Get the smallest k digit number int num = ( int )Math.Pow(10, k-1); while ( true ) { // check the number is palindrome or not if (isPalindrom(num)) --n; // if n'th palindrome found break the loop if (n == 0) break ; // Increment number for checking next palindrome ++num; } return num; } // Driver code public static void Main() { int n = 6, k = 5; Console.WriteLine(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k)); n = 10; k = 6; Console.WriteLine(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k)); } } // This code is contributed // by Akanksha Rai |
PHP
<?php // A naive approach of PHP program // of finding nth palindrome of k digit // Utility function to // reverse the number n function reverseNum( $n ) { $rem ; $rev = 0; while ( $n ) { $rem = $n % 10; $rev = ( $rev * 10) + $rem ; $n = (int)( $n / 10); } return $rev ; } // Boolean Function to check for // palindromic number function isPalindrom( $num ) { return $num == reverseNum( $num ); } // Function for finding nth // palindrome of k digits function nthPalindrome( $n , $k ) { // Get the smallest k digit number $num = pow(10, $k - 1); while (true) { // check the number is // palindrome or not if (isPalindrom( $num )) -- $n ; // if n'th palindrome found // break the loop if (! $n ) break ; // Increment number for checking // next palindrome ++ $num ; } return $num ; } // Driver code $n = 6; $k = 5; echo $n , "th palindrome of " , $k , " digit = " , nthPalindrome( $n , $k ), "\n" ; $n = 10; $k = 6; echo $n , "th palindrome of " , $k , " digit = " , nthPalindrome( $n , $k ), "\n" ; // This code is contributed by ajit ?> |
Javascript
<script> // A naive approach of Javascript // program of finding nth // palindrome of k digit // Utility function to // reverse the number n function reverseNum(n) { let rem, rev = 0; while (n > 0) { rem = n % 10; rev = rev * 10 + rem; n = parseInt(n / 10); } return rev; } // Boolean Function to // check for palindromic // number function isPalindrom(num) { return num == reverseNum(num); } // Function for finding nth // palindrome of k digits function nthPalindrome(n, k) { // Get the smallest k digit number let num = Math.pow(10, k-1); while ( true ) { // check the number is // palindrome or not if (isPalindrom(num)) --n; // if n'th palindrome found // break the loop if (n == 0) break ; // Increment number for checking // next palindrome ++num; } return num; } let n = 6, k = 5; document.write(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k) + "</br>" ); n = 10; k = 6; document.write(n + "th palindrome of " + k + " digit = " + nthPalindrome(n, k)); </script> |
Output:
6th palindrome of 5 digit = 10501 10th palindrome of 6 digit = 109901
Time complexity: O(10k)
Auxiliary space: O(1), since no extra space has been taken.
Efficient approach
An efficient method is to look for a pattern. According to the property of palindrome first, half digits are the same as the rest half digits in reverse order. Therefore, we only need to look for the first half digits as the rest of them can easily be generated. Let’s take k = 8, the smallest palindrome always starts from 1 as the leading digit and goes like that for the first 4 digits of the number.
First half values for k = 8 1st: 1000 2nd: 1001 3rd: 1002 ... ... 100th: 1099 So we can easily write the above sequence for nth palindrome as: (n-1) + 1000 For k digit number, we can generalize above formula as: If k is odd => num = (n-1) + 10k/2 else => num = (n-1) + 10k/2 - 1 Now rest half digits can be expanded by just printing the value of num in reverse order. But before this if k is odd then we have to truncate the last digit of a value num
Illustration:
n = 6 k = 5
- Determine the number of first half digits = floor(5/2) = 2
- Use formula: num = (6-1) + 102 = 105
- Expand the rest half digits by reversing the value of num.
Final answer will be 10501
Below is the implementation of the above steps
C++
// C++ program of finding nth palindrome // of k digit #include<bits/stdc++.h> using namespace std; void nthPalindrome( int n, int k) { // Determine the first half digits int temp = (k & 1) ? (k / 2) : (k/2 - 1); int palindrome = ( int ) pow (10, temp); palindrome += n - 1; // Print the first half digits of palindrome printf ( "%d" , palindrome); // If k is odd, truncate the last digit if (k & 1) palindrome /= 10; // print the last half digits of palindrome while (palindrome) { printf ( "%d" , palindrome % 10); palindrome /= 10; } printf ( "\n" ); } // Driver code int main() { int n = 6, k = 5; printf ( "%dth palindrome of %d digit = " ,n ,k); nthPalindrome(n ,k); n = 10, k = 6; printf ( "%dth palindrome of %d digit = " ,n ,k); nthPalindrome(n, k); return 0; } |
Java
// Java program of finding nth palindrome // of k digit class GFG{ static void nthPalindrome( int n, int k) { // Determine the first half digits int temp = (k & 1 )!= 0 ? (k / 2 ) : (k/ 2 - 1 ); int palindrome = ( int )Math.pow( 10 , temp); palindrome += n - 1 ; // Print the first half digits of palindrome System.out.print(palindrome); // If k is odd, truncate the last digit if ((k & 1 )> 0 ) palindrome /= 10 ; // print the last half digits of palindrome while (palindrome> 0 ) { System.out.print(palindrome % 10 ); palindrome /= 10 ; } System.out.println( "" ); } // Driver code public static void main(String[] args) { int n = 6 , k = 5 ; System.out.print(n+ "th palindrome of " +k+ " digit = " ); nthPalindrome(n ,k); n = 10 ; k = 6 ; System.out.print(n+ "th palindrome of " +k+ " digit = " ); nthPalindrome(n, k); } } // This code is contributed by mits |
Python3
# Python3 program of finding nth palindrome # of k digit def nthPalindrome(n, k): # Determine the first half digits if (k & 1 ): temp = k / / 2 else : temp = k / / 2 - 1 palindrome = 10 * * temp palindrome = palindrome + n - 1 # Print the first half digits of palindrome print (palindrome, end = "") # If k is odd, truncate the last digit if (k & 1 ): palindrome = palindrome / / 10 # print the last half digits of palindrome while (palindrome): print (palindrome % 10 , end = "") palindrome = palindrome / / 10 # Driver code if __name__ = = '__main__' : n = 6 k = 5 print (n, "th palindrome of" , k, " digit = " , end = " " ) nthPalindrome(n, k) print () n = 10 k = 6 print (n, "th palindrome of" , k, "digit = " ,end = " " ) nthPalindrome(n, k) # This code is contributed by # Sanjit_Prasad |
C#
// C# program of finding nth palindrome // of k digit using System; class GFG { static void nthPalindrome( int n, int k) { // Determine the first half digits int temp = (k & 1) != 0 ? (k / 2) : (k / 2 - 1); int palindrome = ( int )Math.Pow(10, temp); palindrome += n - 1; // Print the first half digits // of palindrome Console.Write(palindrome); // If k is odd, truncate the last digit if ((k & 1) > 0) palindrome /= 10; // print the last half digits // of palindrome while (palindrome>0) { Console.Write(palindrome % 10); palindrome /= 10; } Console.WriteLine( "" ); } // Driver code static public void Main () { int n = 6, k = 5; Console.Write(n+ "th palindrome of " + k + " digit = " ); nthPalindrome(n, k); n = 10; k = 6; Console.Write(n+ "th palindrome of " + k + " digit = " ); nthPalindrome(n, k); } } // This code is contributed by ajit |
PHP
<?php // PHP program of finding nth palindrome // of k digit function nthPalindrome( $n , $k ) { // Determine the first half digits $temp = ( $k & 1) ? (int)( $k / 2) : (int)( $k / 2 - 1); $palindrome = (int)pow(10, $temp ); $palindrome += $n - 1; // Print the first half digits of palindrome print ( $palindrome ); // If k is odd, truncate the last digit if ( $k & 1) $palindrome = (int)( $palindrome / 10); // print the last half digits of palindrome while ( $palindrome > 0) { print ( $palindrome % 10); $palindrome = (int)( $palindrome / 10); } print ( "\n" ); } // Driver code $n = 6; $k = 5; print ( $n . "th palindrome of $k digit = " ); nthPalindrome( $n , $k ); $n = 10; $k = 6; print ( $n . "th palindrome of $k digit = " ); nthPalindrome( $n , $k ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program of finding nth palindrome of k digit function nthPalindrome(n, k) { // Determine the first half digits let temp = (k & 1) != 0 ? parseInt(k / 2, 10) : (parseInt(k / 2, 10) - 1); let palindrome = parseInt(Math.pow(10, temp), 10); palindrome += n - 1; // Print the first half digits // of palindrome document.write(palindrome); // If k is odd, truncate the last digit if ((k & 1) > 0) palindrome = parseInt(palindrome / 10, 10); // print the last half digits // of palindrome while (palindrome>0) { document.write(palindrome % 10); palindrome = parseInt(palindrome / 10, 10); } document.write( "" + "</br>" ); } let n = 6, k = 5; document.write(n+ "th palindrome of " + k + " digit = " ); nthPalindrome(n, k); n = 10; k = 6; document.write(n+ "th palindrome of " + k + " digit = " ); nthPalindrome(n, k); </script> |
Output:
6th palindrome of 5 digit = 10501 10th palindrome of 6 digit = 109901
Time complexity: O(k)
Auxiliary space: O(1), since no extra space has been taken.
Reference:
http://stackoverflow.com/questions/11925840/how-to-calculate-nth-n-digit-palindrome-efficiently
This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...