Name some Queue implementations and compare them by efficiency of operations
A queue is a linear data structure in which insertion is done from one end called the rear end and deletion is done from another end called the front end. It follows FIFO (First In First Out) approach. The insertion in the queue is called enqueue operation and deletion in the queue is called dequeue operation.
A queue can be implemented in two ways:
- Array implementation of queue
- Linked List implementation of queue
Array implementation of the queue:
For the array implementation of the queue, we have to take an array of size n. We also use two pointers front and rear to keep track of the front element and the last position where a new element can be inserted respectively. All the functionalities are satisfied by using these two pointers. For more details about array implementation of a queue refer to this link.
Below is the code for array implementation of a queue.
C++
// C++ program to implement queue using array #include <bits/stdc++.h> using namespace std; // Structure of a queue struct Queue { int rear, front, s; int * q; Queue( int c) { front = rear = 0; s = c; q = new int ; } ~Queue() { delete [] q; } // Function to insert element at // the rear end of the queue void enqueue( int data) { if (rear == s) cout << "Queue is full\n" ; else { q[rear] = data; rear++; } return ; } // Function to delete element at // the front end of the queue void dequeue() { if (rear == front) cout << "Queue is empty\n" ; else front++; } // Function to display the queue void display() { if (rear == front) cout << "Queue is empty\n" ; else for ( int i = front; i < rear; i++) { cout << q[i] << " " ; } } }; // Driver code int main() { Queue p(3); p.enqueue(10); p.enqueue(20); p.enqueue(30); p.display(); cout << "\nAfter two deletion\n" ; p.dequeue(); p.dequeue(); p.display(); return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { // Class of a queue static class Queue { int rear, front, s; int q[]; // Constructor of a queue Queue( int c) { front = 0 ; rear = 0 ; s = c; q = new int [s]; } // Function to insert element at // the rear end of the queue void enqueue( int data) { if (rear == s) System.out.println( "Queue is full" ); else { q[rear] = data; rear++; } return ; } // Function to delete element at // the front end of the queue void dequeue() { if (rear == front) System.out.println( "Queue is empty" ); else front++; } // Function to display the queue void display() { if (rear == front) System.out.println( "Queue is empty" ); else for ( int i = front; i < rear; i++) { System.out.print(q[i]+ " " ); } } } public static void main (String[] args) { Queue p = new Queue( 3 ); p.enqueue( 10 ); p.enqueue( 20 ); p.enqueue( 30 ); p.display(); System.out.println( "\nAfter two deletion" ); p.dequeue(); p.dequeue(); p.display(); } } // This code is contributed by aadityaburujwale. |
Python3
# Structure of a queue class Queue: # Constructor of a queue def __init__( self , c): self .rear = 0 self .front = 0 self .s = c self .q = [ 0 ] * c # Function to insert element at # the rear end of the queue def enqueue( self , data): if self .rear = = self .s: print ( "Queue is full" ) else : self .q[ self .rear] = data self .rear + = 1 # Function to delete element at # the front end of the queue def dequeue( self ): if self .rear = = self .front: print ( "Queue is empty" ) else : self .front + = 1 # Function to display the queue def display( self ): if self .rear = = self .front: print ( "Queue is empty" ) else : for i in range ( self .front, self .rear): print ( self .q[i], end = " " ) print () # Driver code if __name__ = = "__main__" : p = Queue( 3 ) p.enqueue( 10 ) p.enqueue( 20 ) p.enqueue( 30 ) p.display() print ( "After two deletion" ) p.dequeue() p.dequeue() p.display() # This code is contributed by akashish__ |
C#
// C# program to implement queue using array using System; public class GFG { // Class of a queue class Queue { public int rear, front, s; public int [] q; // Constructor of a queue public Queue( int c) { front = 0; rear = 0; s = c; q = new int [s]; } // Function to insert element at // the rear end of the queue public void enqueue( int data) { if (rear == s) Console.WriteLine( "Queue is full" ); else { q[rear] = data; rear++; } return ; } // Function to delete element at // the front end of the queue public void dequeue() { if (rear == front) Console.WriteLine( "Queue is empty" ); else front++; } // Function to display the queue public void display() { if (rear == front) Console.WriteLine( "Queue is empty" ); else for ( int i = front; i < rear; i++) { Console.Write(q[i] + " " ); } } } static public void Main() { Queue p = new Queue(3); p.enqueue(10); p.enqueue(20); p.enqueue(30); p.display(); Console.WriteLine( "\nAfter two deletion" ); p.dequeue(); p.dequeue(); p.display(); } } // This code is contributed by lokesh. |
Javascript
// JS program to implement queue using array // Structure of a queue class Queue { constructor() { this .rear = 0; this .front = 0; this .q = new Array; } // Function to insert element at // the rear end of the queue enqueue(data) { if ( this .rear == 3) console.log( "Queue is full" ); else { this .q[ this .rear] = data; this .rear++; } return ; } // Function to delete element at // the front end of the queue dequeue() { if ( this .rear == this .front) console.log( "Queue is empty" ); else this .front++; } // Function to display the queue display() { if ( this .rear == this .front) console.log( "Queue is empty" ); else for (let i = this .front; i < this .rear; i++) { console.log( this .q[i], " " ); } } }; // Driver code let p = new Queue; p.enqueue(10); p.enqueue(20); p.enqueue(30); p.display(); console.log( "After two deletion" ); p.dequeue(); p.dequeue(); p.display(); // This code is contributed by adityamaharshi21 |
10 20 30 After two deletion 30
Time Complexity:
Insertion: O(1)
Deletion: O(1)
Searching: O(n)
Space Complexity: O(n)
Linked List Implementation of the queue:
For implementing a queue using linked list we don’t need to know the size beforehand like array. The dynamic property of linked list allows queue to grow to any size. In case of a linked list also we use two pointers front and rear that perform the same task as in array. For more details about linked list implementation refer to this link.
Below is the code for linked list implementation of queue.
C++
// Program to implement queue using linked list #include <bits/stdc++.h> using namespace std; // Structure of a queue node struct Qnode { int d; struct Qnode* next; }; // Structure of a queue struct Q { struct Qnode *front, *rear; }; // Function to create a new node struct Qnode* newNode( int k) { struct Qnode* t = ( struct Qnode*) malloc ( sizeof ( struct Qnode)); t->d = k; t->next = NULL; return t; } // Function to create a queue struct Q* createQ() { struct Q* q = ( struct Q*) malloc ( sizeof ( struct Q)); q->front = q->rear = NULL; return q; } // Function to enqueue a new value void enqueue( struct Q* q, int data) { struct Qnode* t = newNode(data); if (q->rear == NULL) { q->front = q->rear = t; return ; } q->rear->next = t; q->rear = t; } // Function for mimplementing deque void dequeue( struct Q* q) { if (q->front == NULL) return ; struct Qnode* t = q->front; q->front = q->front->next; if (q->front == NULL) q->rear = NULL; free (t); } // Driver code int main() { struct Q* q = createQ(); enqueue(q, 10); enqueue(q, 20); enqueue(q, 30); dequeue(q); cout << "Queue front " << q->front->d; cout << "\nQueue rear " << q->rear->d; return 0; } |
Java
class Qnode { int d; Qnode next; } class Q { Qnode front, rear; Q() { front = rear = null ; } } class Main { static Qnode newNode( int k) { Qnode t = new Qnode(); t.d = k; t.next = null ; return t; } static Q createQ() { Q q = new Q(); return q; } static void enqueue(Q q, int data) { Qnode t = newNode(data); if (q.rear == null ) { q.front = q.rear = t; return ; } q.rear.next = t; q.rear = t; } static void dequeue(Q q) { if (q.front == null ) { return ; } Qnode t = q.front; q.front = q.front.next; if (q.front == null ) { q.rear = null ; } t = null ; } public static void main(String[] args) { Q q = createQ(); enqueue(q, 10 ); enqueue(q, 20 ); enqueue(q, 30 ); dequeue(q); System.out.println( "Queue front: " + q.front.d); System.out.println( "Queue rear: " + q.rear.d); } } |
Python
class Qnode: def __init__( self , d): self .d = d self . next = None class Q: def __init__( self ): self .front = None self .rear = None def newNode(k): t = Qnode(k) return t def createQ(): q = Q() return q def enqueue(q, data): t = newNode(data) if q.rear is None : q.front = q.rear = t return q.rear. next = t q.rear = t def dequeue(q): if q.front is None : return t = q.front q.front = q.front. next if q.front is None : q.rear = None t = None q = createQ() enqueue(q, 10 ) enqueue(q, 20 ) enqueue(q, 30 ) dequeue(q) print ( "Queue front: " , q.front.d) print ( "Queue rear: " , q.rear.d) |
C#
public class Qnode { public int d; public Qnode next; public Qnode( int val) { d = val; next = null ; } } public class Q { public Qnode front, rear; public Q() { front = rear = null ; } } public class MainClass { public static Qnode newNode( int k) { Qnode t = new Qnode(k); return t; } public static Q createQ() { Q q = new Q(); return q; } public static void enqueue(Q q, int data) { Qnode t = newNode(data); if (q.rear == null ) { q.front = q.rear = t; return ; } q.rear.next = t; q.rear = t; } public static void dequeue(Q q) { if (q.front == null ) { return ; } Qnode t = q.front; q.front = q.front.next; if (q.front == null ) { q.rear = null ; } t = null ; } public static void Main( string [] args) { Q q = createQ(); enqueue(q, 10); enqueue(q, 20); enqueue(q, 30); dequeue(q); System.Console.WriteLine( "Queue front: " + q.front.d); System.Console.WriteLine( "Queue rear: " + q.rear.d); } } // This code is contributed by factworx412. |
Javascript
// Program to implement queue using linked list class QNode { constructor(data) { this .d = data; this .next = null ; } } class Q { constructor() { this .front = this .rear = null ; } } const newNode = data => new QNode(data); const createQ = () => new Q(); const enqueue = (q, data) => { const t = newNode(data); if (q.rear === null ) { q.front = q.rear = t; return ; } q.rear.next = t; q.rear = t; }; const dequeue = q => { if (q.front === null ) return ; const t = q.front; q.front = q.front.next; if (q.front === null ) q.rear = null ; }; // Driver code const q = createQ(); enqueue(q, 10); enqueue(q, 20); enqueue(q, 30); dequeue(q); console.log( "Queue front: " , q.front.d); console.log( "Queue rear: " , q.rear.d); // This code is contributed by aadityamaharshi21. |
Queue front 20 Queue rear 30
Time complexity: The time complexity of enqueue and dequeue operations in a queue implemented using linked list is O(1). This is because, in a linked list, insertion and deletion operations are performed in constant time.
Space complexity: The space complexity of a queue implemented using linked list is O(n), where n is the number of elements in the queue. This is because we need to allocate memory for each element in the queue and the size of the queue increases or decreases as elements are added or removed.
Note: For easy understanding only the enqueue() and deque() functionalities are shown here. For detailed implementation you can check the links provided for implementation.
Comparison:
Queue Operations | Array Implementation | Linked-List Implementation | ||
---|---|---|---|---|
Time Complexity | Space Complexity | Time Complexity | Space Complexity | |
Enqueue | O (1) | O (1) | O (1) | O (1) |
Dequeue | O (1) | O (1) | O (1) | O (1) |
IsFull | O (1) | O (1) | O (N) | O (1) |
IsEmpty | O (1) | O (1) | O (1) | O (1) |
Peek | O (1) | O (1) | O (1) | O (1) |
Related articles:
- Introduction to queue – Data Structure and Algorithm Tutorials
- Array Implementation of Queue
- Linked list implementation of Queue
- Time and Space Complexity Analysis of Queue operations
Please Login to comment...