N Queen in O(n) space
Given n, of a n x n chessboard, find the proper placement of queens on chessboard.
Previous Approach : N Queen
Algorithm :
Place(k, i) // Returns true if a queen can be placed // in kth row and ith column. Otherwise it // returns false. X[] is a global array // whose first (k-1) values have been set. // Abs( ) returns absolute value of r { for j := 1 to k-1 do // Two in the same column // or in the same diagonal if ((x[j] == i) or (abs(x[j] – i) = Abs(j – k))) then return false; return true; }
Algorithm nQueens(k, n) :
// Using backtracking, this procedure prints all // possible placements of n queens on an nĂ—n // chessboard so that they are nonattacking. { for i:= 1 to n do { if Place(k, i) then { x[k] = i; if (k == n) write (x[1:n]); else NQueens(k+1, n); } } }
Implementation:
C++
// CPP code to for n Queen placement #include <bits/stdc++.h> #define breakLine cout << "\n---------------------------------\n"; #define MAX 10 using namespace std; int arr[MAX], no; void nQueens( int k, int n); bool canPlace( int k, int i); void display( int n); // Function to check queens placement void nQueens( int k, int n){ for ( int i = 1;i <= n;i++){ if (canPlace(k, i)){ arr[k] = i; if (k == n) display(n); else nQueens(k + 1, n); } } } // Helper Function to check if queen can be placed bool canPlace( int k, int i){ for ( int j = 1;j <= k - 1;j++){ if (arr[j] == i || ( abs (arr[j] - i) == abs (j - k))) return false ; } return true ; } // Function to display placed queen void display( int n){ breakLine cout << "Arrangement No. " << ++no; breakLine for ( int i = 1; i <= n; i++){ for ( int j = 1; j <= n; j++){ if (arr[i] != j) cout << "\t_" ; else cout << "\tQ" ; } cout << endl; } breakLine } // Driver Code int main(){ int n = 4; nQueens(1, n); return 0; } |
Java
// Java code to for n Queen placement class GfG { static void breakLine() { System.out.print( "\n---------------------------------\n" ); } static int MAX = 10 ; static int arr[] = new int [MAX], no; // Function to check queens placement static void nQueens( int k, int n) { for ( int i = 1 ; i <= n; i++) { if (canPlace(k, i)) { arr[k] = i; if (k == n) { display(n); } else { nQueens(k + 1 , n); } } } } // Helper Function to check if queen can be placed static boolean canPlace( int k, int i) { for ( int j = 1 ; j <= k - 1 ; j++) { if (arr[j] == i || (Math.abs(arr[j] - i) == Math.abs(j - k))) { return false ; } } return true ; } // Function to display placed queen static void display( int n) { breakLine(); System.out.print( "Arrangement No. " + ++no); breakLine(); for ( int i = 1 ; i <= n; i++) { for ( int j = 1 ; j <= n; j++) { if (arr[i] != j) { System.out.print( "\t_" ); } else { System.out.print( "\tQ" ); } } System.out.println( "" ); } breakLine(); } // Driver Code public static void main(String[] args) { int n = 4 ; nQueens( 1 , n); } } // This code is contributed by 29AjayKumar |
Python3
# Python code to for n Queen placement class GfG: def __init__( self ): self . MAX = 10 self .arr = [ 0 ] * self . MAX self .no = 0 def breakLine( self ): print ( "\n------------------------------------------------" ) def canPlace( self , k, i): # Helper Function to check # if queen can be placed for j in range ( 1 , k): if ( self .arr[j] = = i or ( abs ( self .arr[j] - i) = = abs (j - k))): return False return True def display( self , n): # Function to display placed queen self .breakLine() self .no + = 1 print ( "Arrangement No." , self .no, end = " " ) self .breakLine() for i in range ( 1 , n + 1 ): for j in range ( 1 , n + 1 ): if self .arr[i] ! = j: print ( "\t_" , end = " " ) else : print ( "\tQ" , end = " " ) print () self .breakLine() def nQueens( self , k, n): # Function to check queens placement for i in range ( 1 , n + 1 ): if self .canPlace(k, i): self .arr[k] = i if k = = n: self .display(n) else : self .nQueens(k + 1 , n) # Driver Code if __name__ = = '__main__' : n = 4 obj = GfG() obj.nQueens( 1 , n) # This code is contributed by vibhu4agarwal |
C#
// C# code to for n Queen placement using System; class GfG { static void breakLine() { Console.Write( "\n---------------------------------\n" ); } static int MAX = 10; static int []arr = new int [MAX]; static int no; // Function to check queens placement static void nQueens( int k, int n) { for ( int i = 1; i <= n; i++) { if (canPlace(k, i)) { arr[k] = i; if (k == n) { display(n); } else { nQueens(k + 1, n); } } } } // Helper Function to check if queen can be placed static bool canPlace( int k, int i) { for ( int j = 1; j <= k - 1; j++) { if (arr[j] == i || (Math.Abs(arr[j] - i) == Math.Abs(j - k))) { return false ; } } return true ; } // Function to display placed queen static void display( int n) { breakLine(); Console.Write( "Arrangement No. " + ++no); breakLine(); for ( int i = 1; i <= n; i++) { for ( int j = 1; j <= n; j++) { if (arr[i] != j) { Console.Write( "\t_" ); } else { Console.Write( "\tQ" ); } } Console.WriteLine( "" ); } breakLine(); } // Driver Code public static void Main(String[] args) { int n = 4; nQueens(1, n); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to for n Queen placement function breakLine() { document.write( "<br />" ); document.write( "---------------------------------" ); document.write( "<br />" ); } let MAX = 10; let arr = []; let no = 0; // Function to check queens placement function nQueens(k, n) { for (let i = 1; i <= n; i++) { if (canPlace(k, i)) { arr[k] = i; if (k == n) { display(n); } else { nQueens(k + 1, n); } } } } // Helper Function to check if queen can be placed function canPlace(k, i) { for (let j = 1; j <= k - 1; j++) { if (arr[j] == i || (Math.abs(arr[j] - i) == Math.abs(j - k))) { return false ; } } return true ; } // Function to display placed queen function display(n) { breakLine(); document.write( "Arrangement No. " + ++no); breakLine(); for (let i = 1; i <= n; i++) { for (let j = 1; j <= n; j++) { if (arr[i] != j) { document.write( "\t_" ); } else { document.write( "\tQ" ); } } document.write( "<br/>" ); } breakLine(); } // Driver code let n = 4; nQueens(1, n); </script> |
--------------------------------- Arrangement No. 1 --------------------------------- _ Q _ _ _ _ _ Q Q _ _ _ _ _ Q _ --------------------------------- --------------------------------- Arrangement No. 2 --------------------------------- _ _ Q _ Q _ _ _ _ _ _ Q _ Q _ _ ---------------------------------
The time and space complexity of the given code for the N-Queens problem can be analyzed as follows:
Time Complexity:
The algorithm uses backtracking to generate all possible solutions for placing N queens on an N x N chessboard. The backtracking algorithm recursively explores all possible solutions by checking whether a queen can be placed in each column of the current row. The time complexity of the algorithm can be expressed as O(N!) because in the worst case scenario, every queen must be tried in every column of every row.
Space Complexity:
The space complexity of the algorithm depends on the size of the input problem, which is N. In the given code, an array ‘arr’ of size N is used to store the column index of the queen in each row. Additionally, a variable ‘no’ is used to count the number of valid solutions found. Therefore, the space complexity of the algorithm can be expressed as O(N).
In summary, the time complexity of the algorithm is O(N!), and the space complexity is O(N).
Please Login to comment...