Modify a binary tree to get preorder traversal using right pointers only
Given a binary tree. Modify it in such a way that after modification you can have a preorder traversal of it using only the right pointers. During modification, you can use right as well as left pointers.
Examples:
Input : 10 / \ 8 2 / \ 3 5 Output : 10 \ 8 \ 3 \ 5 \ 2 Explanation : The preorder traversal of given binary tree is 10 8 3 5 2.
Method 1 (Recursive):
One needs to make the right pointer of root point to the left subtree.
If the node has just left child, then just moving the child to right will complete the processing for that node.
If there is a right child too, then it should be made right child of the right-most of the original left subtree.
The above function used in the code process a node and then returns the rightmost node of the transformed subtree.
Implementation:
C++
// C code to modify binary tree for // traversal using only right pointer #include <bits/stdc++.h> using namespace std; // A binary tree node has data, // left child and right child struct Node { int data; struct Node* left; struct Node* right; }; // function that allocates a new node // with the given data and NULL left // and right pointers. struct Node* newNode( int data) { struct Node* node = new struct Node; node->data = data; node->left = NULL; node->right = NULL; return (node); } // Function to modify tree struct Node* modifytree( struct Node* root) { struct Node* right = root->right; struct Node* rightMost = root; // if the left tree exists if (root->left) { // get the right-most of the // original left subtree rightMost = modifytree(root->left); // set root right to left subtree root->right = root->left; root->left = NULL; } // if the right subtree does // not exists we are done! if (!right) return rightMost; // set right pointer of right-most // of the original left subtree rightMost->right = right; // modify the rightsubtree rightMost = modifytree(right); return rightMost; } // printing using right pointer only void printpre( struct Node* root) { while (root != NULL) { cout << root->data << " " ; root = root->right; } } // Driver program to test above functions int main() { /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ struct Node* root = newNode(10); root->left = newNode(8); root->right = newNode(2); root->left->left = newNode(3); root->left->right = newNode(5); modifytree(root); printpre(root); return 0; } |
Java
// Java code to modify binary tree for // traversal using only right pointer class GFG { // A binary tree node has data, // left child and right child static class Node { int data; Node left; Node right; }; // function that allocates a new node // with the given data and null left // and right pointers. static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Function to modify tree static Node modifytree( Node root) { Node right = root.right; Node rightMost = root; // if the left tree exists if (root.left != null ) { // get the right-most of the // original left subtree rightMost = modifytree(root.left); // set root right to left subtree root.right = root.left; root.left = null ; } // if the right subtree does // not exists we are done! if (right == null ) return rightMost; // set right pointer of right-most // of the original left subtree rightMost.right = right; // modify the rightsubtree rightMost = modifytree(right); return rightMost; } // printing using right pointer only static void printpre( Node root) { while (root != null ) { System.out.print( root.data + " " ); root = root.right; } } // Driver cde public static void main(String args[]) { /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ Node root = newNode( 10 ); root.left = newNode( 8 ); root.right = newNode( 2 ); root.left.left = newNode( 3 ); root.left.right = newNode( 5 ); modifytree(root); printpre(root); } } // This code is contributed by Arnab Kundu |
Python3
# Python code to modify binary tree for # traversal using only right pointer class newNode(): def __init__( self , data): self .data = data self .left = None self .right = None # Function to modify tree def modifytree(root): right = root.right rightMost = root # if the left tree exists if (root.left): # get the right-most of the # original left subtree rightMost = modifytree(root.left) # set root right to left subtree root.right = root.left root.left = None # if the right subtree does # not exists we are done! if ( not right): return rightMost # set right pointer of right-most # of the original left subtree rightMost.right = right # modify the rightsubtree rightMost = modifytree(right) return rightMost # printing using right pointer only def printpre(root): while (root ! = None ): print (root.data,end = " " ) root = root.right # Driver code if __name__ = = '__main__' : """ Constructed binary tree is 10 / \ 8 2 / \ 3 5 """ root = newNode( 10 ) root.left = newNode( 8 ) root.right = newNode( 2 ) root.left.left = newNode( 3 ) root.left.right = newNode( 5 ) modifytree(root) printpre(root) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# code to modify binary tree for // traversal using only right pointer using System; class GFG { // A binary tree node has data, // left child and right child public class Node { public int data; public Node left; public Node right; }; // function that allocates a new node // with the given data and null left // and right pointers. static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Function to modify tree static Node modifytree( Node root) { Node right = root.right; Node rightMost = root; // if the left tree exists if (root.left != null ) { // get the right-most of the // original left subtree rightMost = modifytree(root.left); // set root right to left subtree root.right = root.left; root.left = null ; } // if the right subtree does // not exists we are done! if (right == null ) return rightMost; // set right pointer of right-most // of the original left subtree rightMost.right = right; // modify the rightsubtree rightMost = modifytree(right); return rightMost; } // printing using right pointer only static void printpre( Node root) { while (root != null ) { Console.Write( root.data + " " ); root = root.right; } } // Driver cde public static void Main(String []args) { /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ Node root = newNode(10); root.left = newNode(8); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); modifytree(root); printpre(root); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript code to modify binary tree for // traversal using only right pointer // A binary tree node has data, // left child and right child class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // function that allocates a new node // with the given data and null left // and right pointers. function newNode(data) { let node = new Node(data); return (node); } // Function to modify tree function modifytree(root) { let right = root.right; let rightMost = root; // if the left tree exists if (root.left != null ) { // get the right-most of the // original left subtree rightMost = modifytree(root.left); // set root right to left subtree root.right = root.left; root.left = null ; } // if the right subtree does // not exists we are done! if (right == null ) return rightMost; // set right pointer of right-most // of the original left subtree rightMost.right = right; // modify the rightsubtree rightMost = modifytree(right); return rightMost; } // printing using right pointer only function printpre(root) { while (root != null ) { document.write( root.data + " " ); root = root.right; } } /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ let root = newNode(10); root.left = newNode(8); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); modifytree(root); printpre(root); </script> |
10 8 3 5 2
Time Complexity : O(n)
Auxiliary Space : O(n)
Method 2 (Iterative): This can be easily done using iterative preorder traversal. See here. Iterative preorder traversal
The idea is to maintain a variable prev which maintains the previous node of the preorder traversal. Every-time a new node is encountered, the node set its right to previous one and prev is made equal to the current node. In the end we will have a sort of linked list whose first element is root then left child then right, so on and so forth.
Implementation:
C++
// C++ code to modify binary tree for // traversal using only right pointer #include <iostream> #include <stack> #include <stdio.h> #include <stdlib.h> using namespace std; // A binary tree node has data, // left child and right child struct Node { int data; struct Node* left; struct Node* right; }; // Helper function that allocates a new // node with the given data and NULL // left and right pointers. struct Node* newNode( int data) { struct Node* node = new struct Node; node->data = data; node->left = NULL; node->right = NULL; return (node); } // An iterative process to set the right // pointer of Binary tree void modifytree( struct Node* root) { // Base Case if (root == NULL) return ; // Create an empty stack and push root to it stack<Node*> nodeStack; nodeStack.push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ struct Node* pre = NULL; while (nodeStack.empty() == false ) { // Pop the top item from stack struct Node* node = nodeStack.top(); nodeStack.pop(); // Push right and left children of // the popped node to stack if (node->right) nodeStack.push(node->right); if (node->left) nodeStack.push(node->left); // check if some previous node exists if (pre != NULL) { // set the right pointer of // previous node to current pre->right = node; } // set previous node as current node pre = node; } } // printing using right pointer only void printpre( struct Node* root) { while (root != NULL) { cout << root->data << " " ; root = root->right; } } // Driver code int main() { /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ struct Node* root = newNode(10); root->left = newNode(8); root->right = newNode(2); root->left->left = newNode(3); root->left->right = newNode(5); modifytree(root); printpre(root); return 0; } |
Java
// Java code to modify binary tree for // traversal using only right pointer import java.util.*; class GfG { // A binary tree node has data, // left child and right child static class Node { int data; Node left; Node right; } // Helper function that allocates a new // node with the given data and NULL // left and right pointers. static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // An iterative process to set the right // pointer of Binary tree static void modifytree(Node root) { // Base Case if (root == null ) return ; // Create an empty stack and push root to it Stack<Node> nodeStack = new Stack<Node> (); nodeStack.push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ Node pre = null ; while (nodeStack.isEmpty() == false ) { // Pop the top item from stack Node node = nodeStack.peek(); nodeStack.pop(); // Push right and left children of // the popped node to stack if (node.right != null ) nodeStack.push(node.right); if (node.left != null ) nodeStack.push(node.left); // check if some previous node exists if (pre != null ) { // set the right pointer of // previous node to current pre.right = node; } // set previous node as current node pre = node; } } // printing using right pointer only static void printpre(Node root) { while (root != null ) { System.out.print(root.data + " " ); root = root.right; } } // Driver code public static void main(String[] args) { /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ Node root = newNode( 10 ); root.left = newNode( 8 ); root.right = newNode( 2 ); root.left.left = newNode( 3 ); root.left.right = newNode( 5 ); modifytree(root); printpre(root); } } |
Python
# Python code to modify binary tree for # traversal using only right pointer # A binary tree node has data, # left child and right child class newNode(): def __init__( self , data): self .data = data self .left = None self .right = None # An iterative process to set the right # pointer of Binary tree def modifytree( root): # Base Case if (root = = None ): return # Create an empty stack and append root to it nodeStack = [] nodeStack.append(root) ''' Pop all items one by one. Do following for every popped item a) print b) append its right child c) append its left child Note that right child is appended first so that left is processed first ''' pre = None while ( len (nodeStack)): # Pop the top item from stack node = nodeStack[ - 1 ] nodeStack.pop() # append right and left children of # the popped node to stack if (node.right): nodeStack.append(node.right) if (node.left): nodeStack.append(node.left) # check if some previous node exists if (pre ! = None ): # set the right pointer of # previous node to current pre.right = node # set previous node as current node pre = node # printing using right pointer only def printpre( root): while (root ! = None ): print (root.data, end = " " ) root = root.right # Driver code ''' Constructed binary tree is 10 / \ 8 2 / \ 3 5 ''' root = newNode( 10 ) root.left = newNode( 8 ) root.right = newNode( 2 ) root.left.left = newNode( 3 ) root.left.right = newNode( 5 ) modifytree(root) printpre(root) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# code to modify binary tree for // traversal using only right pointer using System; using System.Collections; class GfG { // A binary tree node has data, // left child and right child public class Node { public int data; public Node left; public Node right; } // Helper function that allocates a new // node with the given data and NULL // left and right pointers. static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // An iterative process to set the right // pointer of Binary tree static void modifytree(Node root) { // Base Case if (root == null ) return ; // Create an empty stack and Push root to it Stack nodeStack = new Stack(); nodeStack.Push(root); /* Pop all items one by one. Do following for every Popped item a) print it b) Push its right child c) Push its left child Note that right child is Pushed first so that left is processed first */ Node pre = null ; while (nodeStack.Count !=0) { // Pop the top item from stack Node node = (Node)nodeStack.Peek(); nodeStack.Pop(); // Push right and left children of // the Popped node to stack if (node.right != null ) nodeStack.Push(node.right); if (node.left != null ) nodeStack.Push(node.left); // check if some previous node exists if (pre != null ) { // set the right pointer of // previous node to current pre.right = node; } // set previous node as current node pre = node; } } // printing using right pointer only static void printpre(Node root) { while (root != null ) { Console.Write(root.data + " " ); root = root.right; } } // Driver code public static void Main(String []args) { /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ Node root = newNode(10); root.left = newNode(8); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); modifytree(root); printpre(root); } } // This code is contributed by // Arnab Kundu |
Javascript
<script> // JavaScript code to modify binary tree for // traversal using only right pointer class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Helper function that allocates a new // node with the given data and NULL // left and right pointers. function newNode(data) { let node = new Node(data); return (node); } // An iterative process to set the right // pointer of Binary tree function modifytree(root) { // Base Case if (root == null ) return ; // Create an empty stack and push root to it let nodeStack = []; nodeStack.push(root); /* Pop all items one by one. Do following for every popped item a) print it b) push its right child c) push its left child Note that right child is pushed first so that left is processed first */ let pre = null ; while (nodeStack.length > 0) { // Pop the top item from stack let node = nodeStack[nodeStack.length - 1]; nodeStack.pop(); // Push right and left children of // the popped node to stack if (node.right != null ) nodeStack.push(node.right); if (node.left != null ) nodeStack.push(node.left); // check if some previous node exists if (pre != null ) { // set the right pointer of // previous node to current pre.right = node; } // set previous node as current node pre = node; } } // printing using right pointer only function printpre(root) { while (root != null ) { document.write(root.data + " " ); root = root.right; } } /* Constructed binary tree is 10 / \ 8 2 / \ 3 5 */ let root = newNode(10); root.left = newNode(8); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); modifytree(root); printpre(root); </script> |
10 8 3 5 2
Time Complexity : O(n)
Auxiliary Space : O(n)
Please Login to comment...