Minimum Word Break
Given a string s, break s such that every substring of the partition can be found in the dictionary. Return the minimum break needed.
Examples:
Given a dictionary ["Cat", "Mat", "Ca", "tM", "at", "C", "Dog", "og", "Do"] Input : Pattern "CatMat" Output : 1 Explanation: we can break the sentences in three ways, as follows: CatMat = [ Cat Mat ] break 1 CatMat = [ Ca tM at ] break 2 CatMat = [ C at Mat ] break 2 so the output is: 1 Input : Dogcat Output : 1
Asked in: Facebook
Solution of this problem is based on the WordBreak Trie solution and level ordered graph. We start traversing given pattern and start finding a character of pattern in a trie. If we reach a node(leaf) of a trie from where we can traverse a new word of a trie(dictionary), we increment level by one and call search function for rest of the pattern character in a trie. In the end, we return minimum Break.
MinBreak(Trie, key, level, start = 0 ) .... If start == key.length() ...update min_break for i = start to keylength ....If we found a leaf node in trie MinBreak( Trie, key, level+1, i )
Below is the implementation of above idea
C++
// C++ program to find minimum breaks needed // to break a string in dictionary words. #include <bits/stdc++.h> using namespace std; const int ALPHABET_SIZE = 26; // trie node struct TrieNode { struct TrieNode* children[ALPHABET_SIZE]; // isEndOfWord is true if the node // represents end of a word bool isEndOfWord; }; // Returns new trie node (initialized to NULLs) struct TrieNode* getNode( void ) { struct TrieNode* pNode = new TrieNode; pNode->isEndOfWord = false ; for ( int i = 0; i < ALPHABET_SIZE; i++) pNode->children[i] = NULL; return pNode; } // If not present, inserts the key into the trie // If the key is the prefix of trie node, just // marks leaf node void insert( struct TrieNode* root, string key) { struct TrieNode* pCrawl = root; for ( int i = 0; i < key.length(); i++) { int index = key[i] - 'a' ; if (!pCrawl->children[index]) pCrawl->children[index] = getNode(); pCrawl = pCrawl->children[index]; } // mark last node as leaf pCrawl->isEndOfWord = true ; } // function break the string into minimum cut // such the every substring after breaking // in the dictionary. void minWordBreak( struct TrieNode* root, string key, int start, int * min_Break, int level = 0) { struct TrieNode* pCrawl = root; // base case, update minimum Break if (start == key.length()) { *min_Break = min(*min_Break, level - 1); return ; } // traverse given key(pattern) int minBreak = 0; for ( int i = start; i < key.length(); i++) { int index = key[i] - 'a' ; if (!pCrawl->children[index]) return ; // if we find a condition where we can // move to the next word in a trie // dictionary if (pCrawl->children[index]->isEndOfWord) minWordBreak(root, key, i + 1, min_Break, level + 1); pCrawl = pCrawl->children[index]; } } // Driver program to test above functions int main() { string dictionary[] = { "Cat" , "Mat" , "Ca" , "Ma" , "at" , "C" , "Dog" , "og" , "Do" }; int n = sizeof (dictionary) / sizeof (dictionary[0]); struct TrieNode* root = getNode(); // Construct trie for ( int i = 0; i < n; i++) insert(root, dictionary[i]); int min_Break = INT_MAX; minWordBreak(root, "CatMatat" , 0, &min_Break, 0); cout << min_Break << endl; return 0; } |
Java
// Java program to find minimum breaks needed // to break a string in dictionary words. public class Trie { TrieNode root = new TrieNode(); int minWordBreak = Integer.MAX_VALUE; // Trie node class TrieNode { boolean endOfTree; TrieNode children[] = new TrieNode[ 26 ]; TrieNode(){ endOfTree = false ; for ( int i= 0 ;i< 26 ;i++){ children[i]= null ; } } } // If not present, inserts a key into the trie // If the key is the prefix of trie node, just // marks leaf node void insert(String key){ int length = key.length(); int index; TrieNode pcrawl = root; for ( int i = 0 ; i < length; i++) { index = key.charAt(i)- 'a' ; if (pcrawl.children[index] == null ) pcrawl.children[index] = new TrieNode(); pcrawl = pcrawl.children[index]; } // mark last node as leaf pcrawl.endOfTree = true ; } // function break the string into minimum cut // such the every substring after breaking // in the dictionary. void minWordBreak(String key) { minWordBreak = Integer.MAX_VALUE; minWordBreakUtil(root, key, 0 , Integer.MAX_VALUE, 0 ); } void minWordBreakUtil(TrieNode node, String key, int start, int min_Break, int level) { TrieNode pCrawl = node; // base case, update minimum Break if (start == key.length()) { min_Break = Math.min(min_Break, level - 1 ); if (min_Break<minWordBreak){ minWordBreak = min_Break; } return ; } // traverse given key(pattern) for ( int i = start; i < key.length(); i++) { int index = key.charAt(i) - 'a' ; if (pCrawl.children[index]== null ) return ; // if we find a condition were we can // move to the next word in a trie // dictionary if (pCrawl.children[index].endOfTree) { minWordBreakUtil(root, key, i + 1 , min_Break, level + 1 ); } pCrawl = pCrawl.children[index]; } } // Driver code public static void main(String[] args) { String keys[] = { "cat" , "mat" , "ca" , "ma" , "at" , "c" , "dog" , "og" , "do" }; Trie trie = new Trie(); // Construct trie int i; for (i = 0 ; i < keys.length ; i++) trie.insert(keys[i]); trie.minWordBreak( "catmatat" ); System.out.println(trie.minWordBreak); } } // This code is contributed by Pavan Koli. |
C#
// C# program to find minimum breaks needed // to break a string in dictionary words. using System; class Trie { TrieNode root = new TrieNode(); int minWordBreak = int .MaxValue ; // Trie node public class TrieNode { public bool endOfTree; public TrieNode []children = new TrieNode[26]; public TrieNode() { endOfTree = false ; for ( int i = 0; i < 26; i++) { children[i] = null ; } } } // If not present, inserts a key // into the trie If the key is the // prefix of trie node, just marks leaf node void insert(String key) { int length = key.Length; int index; TrieNode pcrawl = root; for ( int i = 0; i < length; i++) { index = key[i]- 'a' ; if (pcrawl.children[index] == null ) pcrawl.children[index] = new TrieNode(); pcrawl = pcrawl.children[index]; } // mark last node as leaf pcrawl.endOfTree = true ; } // function break the string into minimum cut // such the every substring after breaking // in the dictionary. void minWordBreaks(String key) { minWordBreak = int .MaxValue; minWordBreakUtil(root, key, 0, int .MaxValue, 0); } void minWordBreakUtil(TrieNode node, String key, int start, int min_Break, int level) { TrieNode pCrawl = node; // base case, update minimum Break if (start == key.Length) { min_Break = Math.Min(min_Break, level - 1); if (min_Break < minWordBreak) { minWordBreak = min_Break; } return ; } // traverse given key(pattern) for ( int i = start; i < key.Length; i++) { int index = key[i] - 'a' ; if (pCrawl.children[index]== null ) return ; // if we find a condition were we can // move to the next word in a trie // dictionary if (pCrawl.children[index].endOfTree) { minWordBreakUtil(root, key, i + 1, min_Break, level + 1); } pCrawl = pCrawl.children[index]; } } // Driver code public static void Main(String[] args) { String []keys = { "cat" , "mat" , "ca" , "ma" , "at" , "c" , "dog" , "og" , "do" }; Trie trie = new Trie(); // Construct trie int i; for (i = 0; i < keys.Length ; i++) trie.insert(keys[i]); trie.minWordBreaks( "catmatat" ); Console.WriteLine(trie.minWordBreak); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program to find minimum breaks needed // to break a string in dictionary words. class TrieNode { constructor() { this .endOfTree= false ; this .children= new Array(26); for (let i=0;i<26;i++) this .children[i]= null ; } } let root = new TrieNode(); let minWordBreak = Number.MAX_VALUE; // If not present, inserts a key into the trie // If the key is the prefix of trie node, just // marks leaf node function insert(key) { let length = key.length; let index; let pcrawl = root; for (let i = 0; i < length; i++) { index = key[i].charAt(0)- 'a' .charAt(0); if (pcrawl.children[index] == null ) pcrawl.children[index] = new TrieNode(); pcrawl = pcrawl.children[index]; } // mark last node as leaf pcrawl.endOfTree = true ; } // function break the string into minimum cut // such the every substring after breaking // in the dictionary. function _minWordBreak(key) { minWordBreak = Number.MAX_VALUE; minWordBreakUtil(root, key, 0, Number.MAX_VALUE, 0); } function minWordBreakUtil(node,key,start,min_Break,level) { let pCrawl = node; // base case, update minimum Break if (start == key.length) { min_Break = Math.min(min_Break, level - 1); if (min_Break<minWordBreak){ minWordBreak = min_Break; } return ; } // traverse given key(pattern) for (let i = start; i < key.length; i++) { let index = key[i].charAt(0) - 'a' .charAt(0); if (pCrawl.children[index]== null ) return ; // if we find a condition were we can // move to the next word in a trie // dictionary if (pCrawl.children[index].endOfTree) { minWordBreakUtil(root, key, i + 1, min_Break, level + 1); } pCrawl = pCrawl.children[index]; } } // Driver code let keys=[ "cat" , "mat" , "ca" , "ma" , "at" , "c" , "dog" , "og" , "do" ]; let i; for (i = 0; i < keys.length ; i++) insert(keys[i]); _minWordBreak( "catmatat" ); document.write(minWordBreak); // This code is contributed by rag2127 </script> |
Python3
# Python program to find minimum breaks needed # to break a string in dictionary words. import sys class TrieNode: def __init__( self ): self .endOfTree = False self .children = [ None for i in range ( 26 )] root = TrieNode() minWordBreak = sys.maxsize # If not present, inserts a key into the trie # If the key is the prefix of trie node, just # marks leaf node def insert(key): global root,minWordBreak length = len (key) pcrawl = root for i in range (length): index = ord (key[i]) - ord ( 'a' ) if (pcrawl.children[index] = = None ): pcrawl.children[index] = TrieNode() pcrawl = pcrawl.children[index] # mark last node as leaf pcrawl.endOfTree = True # function break the string into minimum cut # such the every substring after breaking # in the dictionary. def _minWordBreak(key): global minWordBreak minWordBreak = sys.maxsize minWordBreakUtil(root, key, 0 , sys.maxsize, 0 ) def minWordBreakUtil(node,key,start,min_Break,level): global minWordBreak,root pCrawl = node # base case, update minimum Break if (start = = len (key)): min_Break = min (min_Break, level - 1 ) if (min_Break<minWordBreak): minWordBreak = min_Break return # traverse given key(pattern) for i in range (start, len (key)): index = ord (key[i]) - ord ( 'a' ) if (pCrawl.children[index] = = None ): return # if we find a condition were we can # move to the next word in a trie # dictionary if (pCrawl.children[index].endOfTree): minWordBreakUtil(root, key, i + 1 ,min_Break, level + 1 ) pCrawl = pCrawl.children[index] # Driver code keys = [ "cat" , "mat" , "ca" , "ma" , "at" , "c" , "dog" , "og" , "do" ] for i in range ( len (keys)): insert(keys[i]) _minWordBreak( "catmatat" ) print (minWordBreak) # This code is contributed by shinjanpatra |
2
Time Complexity: O(n*n*L) where n is the length of the input string and L is the maximum length of word in the dictionary.
Auxiliary Space: O(ALPHABET_SIZE^L+n*L)
Approach 2: Using Dynamic Programming
- We maintain an array dp where dp[i] represents the minimum number of breaks needed to break the substring s[0…i-1] into dictionary words.
- We initialize dp[0] = 0 since the empty string can be broken into zero words.
- For each position i in the string, we iterate over all dictionary words and check if the substring ending at position i matches the current dictionary word.
- If it does, we update dp[i] to be the minimum of dp[i] and dp[i – len] + 1, where len is the length of the current dictionary word.
- Finally, we return dp[n] – 1, where n is the length of the input string, since the number of breaks needed is one less than the number of words.
C++
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; int minWordBreak(string s, vector<string>& dict) { int n = s.length(); vector< int > dp(n + 1, INF); dp[0] = 0; for ( int i = 1; i <= n; i++) { for (string word : dict) { int len = word.length(); if (i >= len && s.substr(i - len, len) == word) { dp[i] = min(dp[i], dp[i - len] + 1); } } } return dp[n] - 1; } int main() { vector<string> dict = { "Cat" , "Mat" , "Ca" , "Ma" , "at" , "C" , "Dog" , "og" , "Do" }; string s = "CatMatat" ; cout << minWordBreak(s, dict) << endl; return 0; } |
2
Note that this code has a time complexity of O(n*m), where n is the length of the input string and m is the size of the dictionary. This is because we iterate over all positions in the string and for each position, we iterate over all words in the dictionary.
This article is contributed by Aarti_Rathi and Ayush_Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...