Minimum Swaps for Bracket Balancing
You are given a string of 2N characters consisting of N ‘[‘ brackets and N ‘]’ brackets. A string is considered balanced if it can be represented in the form S2[S1] where S1 and S2 are balanced strings. We can make an unbalanced string balanced by swapping adjacent characters. Calculate the minimum number of swaps necessary to make a string balanced.
Examples:
Input : []][][ Output : 2 First swap: Position 3 and 4 [][]][ Second swap: Position 5 and 6 [][][] Input : [[][]] Output : 0 The string is already balanced.
We can solve this problem by using greedy strategies. If the first X characters form a balanced string, we can neglect these characters and continue on. If we encounter a ‘]’ before the required ‘[‘, then we must start swapping elements to balance the string.
Naive Approach
Initialize sum = 0 where sum stores result. Go through the string maintaining a count of the number of ‘[‘ brackets encountered. Reduce this count when we encounter a ‘]’ character. If the count hits negative, then we must start balancing the string.
Let index ‘i’ represent the position we are at. We now move forward to the next ‘[‘ at index j. Increase sum by j – i. Move the ‘[‘ at position j, to position i, and shift all other characters to the right. Set the count back to 1 and continue traversing the string. In the end, ‘sum’ will have the required value.
Time Complexity = O(N^2)
Extra Space = O(1)
Optimized approach
We can initially go through the string and store the positions of ‘[‘ in a vector say ‘pos‘. Initialize ‘p’ to 0. We shall use p to traverse the vector ‘pos’. Similar to the naive approach, we maintain a count of encountered ‘[‘ brackets. When we encounter a ‘[‘ we increase the count and increase ‘p’ by 1. When we encounter a ‘]’ we decrease the count. If the count ever goes negative, this means we must start swapping. The element pos[p] tells us the index of the next ‘[‘. We increase the sum by pos[p] – i, where i is the current index. We can swap the elements in the current index and pos[p] and reset the count to 0 and increment p so that it pos[p] indicates to the next ‘[‘.
Since we have converted a step that was O(N) in the naive approach, to an O(1) step, our new time complexity reduces.
Time Complexity = O(N)
Extra Space = O(N)
C++
// C++ program to count swaps required to balance string #include <iostream> #include <vector> #include <algorithm> using namespace std; // Function to calculate swaps required long swapCount(string s) { // Keep track of '[' vector< int > pos; for ( int i = 0; i < s.length(); ++i) if (s[i] == '[' ) pos.push_back(i); int count = 0; // To count number of encountered '[' int p = 0; // To track position of next '[' in pos long sum = 0; // To store result for ( int i = 0; i < s.length(); ++i) { // Increment count and move p to next position if (s[i] == '[' ) { ++count; ++p; } else if (s[i] == ']' ) --count; // We have encountered an unbalanced part of string if (count < 0) { // Increment sum by number of swaps required // i.e. position of next '[' - current position sum += pos[p] - i; swap(s[i], s[pos[p]]); ++p; // Reset count to 1 count = 1; } } return sum; } // Driver code int main() { string s = "[]][][" ; cout << swapCount(s) << "\n" ; s = "[[][]]" ; cout << swapCount(s) << "\n" ; return 0; } |
Java
// Java program to count swaps // required to balance string import java.util.*; class GFG{ // Function to calculate swaps required public static long swapCount(String s) { // Keep track of '[' Vector<Integer> pos = new Vector<Integer>(); for ( int i = 0 ; i < s.length(); ++i) if (s.charAt(i) == '[' ) pos.add(i); // To count number of encountered '[' int count = 0 ; // To track position of next '[' in pos int p = 0 ; // To store result long sum = 0 ; char [] S = s.toCharArray(); for ( int i = 0 ; i < s.length(); ++i) { // Increment count and move p // to next position if (S[i] == '[' ) { ++count; ++p; } else if (S[i] == ']' ) --count; // We have encountered an // unbalanced part of string if (count < 0 ) { // Increment sum by number of // swaps required i.e. position // of next '[' - current position sum += pos.get(p) - i; char temp = S[i]; S[i] = S[pos.get(p)]; S[pos.get(p)] = temp; ++p; // Reset count to 1 count = 1 ; } } return sum; } // Driver code public static void main(String[] args) { String s = "[]][][" ; System.out.println(swapCount(s)); s = "[[][]]" ; System.out.println(swapCount(s)); } } // This code is contributed by divyesh072019 |
Python3
# Python3 Program to count # swaps required to balance # string # Function to calculate # swaps required def swapCount(s): # Keep track of '[' pos = [] for i in range ( len (s)): if (s[i] = = '[' ): pos.append(i) # To count number # of encountered '[' count = 0 # To track position # of next '[' in pos p = 0 # To store result sum = 0 s = list (s) for i in range ( len (s)): # Increment count and # move p to next position if (s[i] = = '[' ): count + = 1 p + = 1 elif (s[i] = = ']' ): count - = 1 # We have encountered an # unbalanced part of string if (count < 0 ): # Increment sum by number # of swaps required # i.e. position of next # '[' - current position sum + = pos[p] - i s[i], s[pos[p]] = (s[pos[p]], s[i]) p + = 1 # Reset count to 1 count = 1 return sum # Driver code s = "[]][][" print (swapCount(s)) s = "[[][]]" print (swapCount(s)) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program to count swaps // required to balance string using System.IO; using System; using System.Collections; using System.Collections.Generic; class GFG{ // Function to calculate swaps required static long swapCount( string s) { // Keep track of '[' List< int > pos = new List< int >(); for ( int i = 0; i < s.Length; i++) { if (s[i] == '[' ) { pos.Add(i); } } // To count number of encountered '[' int count = 0; // To track position of next '[' in pos int p = 0; // To store result long sum = 0; char [] S = s.ToCharArray(); for ( int i = 0; i < S.Length; i++) { // Increment count and move p // to next position if (S[i] == '[' ) { ++count; ++p; } else if (S[i] == ']' ) { --count; } // We have encountered an // unbalanced part of string if (count < 0) { // Increment sum by number of // swaps required i.e. position // of next '[' - current position sum += pos[p]-i; char temp = S[i]; S[i] = S[pos[p]]; S[pos[p]] = temp; ++p; // Reset count to 1 count = 1; } } return sum; } // Driver code static void Main() { string s = "[]][][" ; Console.WriteLine(swapCount(s)); s = "[[][]]" ; Console.WriteLine(swapCount(s)); } } // This code is contributed by rag2127 |
Javascript
<script> // JavaScript program to count swaps // required to balance string // Function to calculate swaps required function swapCount(s) { // Keep track of '[' let pos = []; for (let i = 0; i < s.length; ++i) if (s[i] == '[' ) pos.push(i); // To count number of encountered '[' let count = 0; // To track position of next '[' in pos let p = 0; // To store result let sum = 0; let S = s.split( '' ); for (let i = 0; i < s.length; ++i) { // Increment count and move p // to next position if (S[i] == '[' ) { ++count; ++p; } else if (S[i] == ']' ) --count; // We have encountered an // unbalanced part of string if (count < 0) { // Increment sum by number of // swaps required i.e. position // of next '[' - current position sum += pos[p] - i; let temp = S[i]; S[i] = S[pos[p]]; S[pos[p]] = temp; ++p; // Reset count to 1 count = 1; } } return sum; } // Driver Code let s = "[]][][" ; document.write(swapCount(s) + "<br/>" ); s = "[[][]]" ; document.write(swapCount(s)); </script> |
2 0
Time Complexity: O(N)
Auxiliary Space: O(N)
Another Method:
We can do without having to store the positions of ‘[‘.
Below is the implementation :
C++
// C++ program to count swaps required // to balance string #include <bits/stdc++.h> using namespace std; long swapCount(string chars) { // Stores total number of Left and // Right brackets encountered int countLeft = 0, countRight = 0; // swap stores the number of swaps // required imbalance maintains // the number of imbalance pair int swap = 0 , imbalance = 0; for ( int i = 0; i < chars.length(); i++) { if (chars[i] == '[' ) { // Increment count of Left bracket countLeft++; if (imbalance > 0) { // swaps count is last swap count + total // number imbalanced brackets swap += imbalance; // imbalance decremented by 1 as it solved // only one imbalance of Left and Right imbalance--; } } else if (chars[i] == ']' ) { // Increment count of Right bracket countRight++; // imbalance is reset to current difference // between Left and Right brackets imbalance = (countRight - countLeft); } } return swap; } // Driver code int main() { string s = "[]][][" ; cout << swapCount(s) << endl; s = "[[][]]" ; cout << swapCount(s) << endl; return 0; } // This code is contributed by divyeshrabadiya07 |
Java
// Java Program to count swaps required to balance string public class BalanceParan { static long swapCount(String s) { char [] chars = s.toCharArray(); // stores total number of Left and Right // brackets encountered int countLeft = 0 , countRight = 0 ; // swap stores the number of swaps required //imbalance maintains the number of imbalance pair int swap = 0 , imbalance = 0 ; for ( int i = 0 ; i< chars.length; i++) { if (chars[i] == '[' ) { // increment count of Left bracket countLeft++; if (imbalance > 0 ) { // swaps count is last swap count + total // number imbalanced brackets swap += imbalance; // imbalance decremented by 1 as it solved // only one imbalance of Left and Right imbalance--; } } else if (chars[i] == ']' ) { // increment count of Right bracket countRight++; // imbalance is reset to current difference // between Left and Right brackets imbalance = (countRight-countLeft); } } return swap; } // Driver code public static void main(String args[]) { String s = "[]][][" ; System.out.println(swapCount(s) ); s = "[[][]]" ; System.out.println(swapCount(s) ); } } // This code is contributed by Janmejaya Das. |
Python3
# Python3 program to count swaps required to # balance string def swapCount(s): # Swap stores the number of swaps # required imbalance maintains the # number of imbalance pair swap = 0 imbalance = 0 ; for i in s: if i = = '[' : # Decrement the imbalance imbalance - = 1 else : # Increment imbalance imbalance + = 1 if imbalance > 0 : swap + = imbalance return swap # Driver code s = "[]][][" ; print (swapCount(s)) s = "[[][]]" ; print (swapCount(s)) # This code is contributed by Prateek Gupta and improved by Anvesh Govind Saxena |
C#
// C# Program to count swaps required // to balance string using System; class GFG { public static long swapCount( string s) { char [] chars = s.ToCharArray(); // stores the total number of Left and // Right brackets encountered int countLeft = 0, countRight = 0; // swap stores the number of swaps // required imbalance maintains the // number of imbalance pair int swap = 0, imbalance = 0; for ( int i = 0; i < chars.Length; i++) { if (chars[i] == '[' ) { // increment count of Left bracket countLeft++; if (imbalance > 0) { // swaps count is last swap count + total // number imbalanced brackets swap += imbalance; // imbalance decremented by 1 as it solved // only one imbalance of Left and Right imbalance--; } } else if (chars[i] == ']' ) { // increment count of Right bracket countRight++; // imbalance is reset to current difference // between Left and Right brackets imbalance = (countRight - countLeft); } } return swap; } // Driver code public static void Main( string [] args) { string s = "[]][][" ; Console.WriteLine(swapCount(s)); s = "[[][]]" ; Console.WriteLine(swapCount(s)); } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript Program to count swaps required // to balance string function swapCount(s) { let chars = s.split( '' ); // stores the total number of Left and // Right brackets encountered let countLeft = 0, countRight = 0; // swap stores the number of swaps // required imbalance maintains the // number of imbalance pair let swap = 0, imbalance = 0; for (let i = 0; i < chars.length; i++) { if (chars[i] == '[' ) { // increment count of Left bracket countLeft++; if (imbalance > 0) { // swaps count is last swap count + total // number imbalanced brackets swap += imbalance; // imbalance decremented by 1 as it solved // only one imbalance of Left and Right imbalance--; } } else if (chars[i] == ']' ) { // increment count of Right bracket countRight++; // imbalance is reset to current difference // between Left and Right brackets imbalance = (countRight - countLeft); } } return swap; } let s = "[]][][" ; document.write(swapCount(s) + "</br>" ); s = "[[][]]" ; document.write(swapCount(s)); // This code is contributed by suresh07. </script> |
2 0
Time Complexity :O(N)
Auxiliary Space : O(1)
This article is contributed by Aarti_Rathi and Aditya Kamath. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...