Minimum sum of two numbers formed from digits of an array
Given an array of digits (values are from 0 to 9), find the minimum possible sum of two numbers formed from digits of the array. All digits of given array must be used to form the two numbers.
Examples:
Input: [6, 8, 4, 5, 2, 3] Output: 604 The minimum sum is formed by numbers 358 and 246 Input: [5, 3, 0, 7, 4] Output: 82 The minimum sum is formed by numbers 35 and 047
Since we want to minimize the sum of two numbers to be formed, we must divide all digits in two halves and assign half-half digits to them. We also need to make sure that the leading digits are smaller.
We build a Min Heap with the elements of the given array, which takes O(n) worst time. Now we retrieve min values (2 at a time) of array, by polling from the Priority Queue and append these two min values to our numbers, till the heap becomes empty, i.e., all the elements of array get exhausted. We return the sum of two formed numbers, which is our required answer. Overall complexity is O(nlogn) as push() operation takes O(logn) and it’s repeated n times.
Implementation:
C++
// C++ program to find minimum sum of two numbers // formed from all digits in a given array. #include<bits/stdc++.h> using namespace std; // Returns sum of two numbers formed // from all digits in a[] int minSum( int arr[], int n) { // min Heap priority_queue < int , vector< int >, greater< int > > pq; // to store the 2 numbers formed by array elements to // minimize the required sum string num1, num2; // Adding elements in Priority Queue for ( int i=0; i<n; i++) pq.push(arr[i]); // checking if the priority queue is non empty while (!pq.empty()) { // appending top of the queue to the string num1+=(48 + pq.top()); pq.pop(); if (!pq.empty()) { num2+=(48 + pq.top()); pq.pop(); } } // converting string to integer int a = atoi (num1.c_str()); int b = atoi (num2.c_str()); // returning the sum return a+b; } int main() { int arr[] = {6, 8, 4, 5, 2, 3}; int n = sizeof (arr)/ sizeof (arr[0]); cout<<minSum(arr, n)<<endl; return 0; } // Contributed By: Harshit Sidhwa |
Java
// Java program to find minimum sum of two numbers // formed from all digits in a given array. import java.util.PriorityQueue; class MinSum { // Returns sum of two numbers formed // from all digits in a[] public static long solve( int [] a) { // min Heap PriorityQueue<Integer> pq = new PriorityQueue<Integer>(); // to store the 2 numbers formed by array elements to // minimize the required sum StringBuilder num1 = new StringBuilder(); StringBuilder num2 = new StringBuilder(); // Adding elements in Priority Queue for ( int x : a) pq.add(x); // checking if the priority queue is non empty while (!pq.isEmpty()) { num1.append(pq.poll()+ "" ); if (!pq.isEmpty()) num2.append(pq.poll()+ "" ); } // the required sum calculated long sum = Long.parseLong(num1.toString()) + Long.parseLong(num2.toString()); return sum; } // Driver code public static void main (String[] args) { int arr[] = { 6 , 8 , 4 , 5 , 2 , 3 }; System.out.println( "The required sum is " + solve(arr)); } } |
Python3
# Python3 program to find minimum # sum of two numbers formed from # all digits in a given array. from queue import PriorityQueue # Returns sum of two numbers formed # from all digits in a[] def solve(a): # min Heap pq = PriorityQueue() # To store the 2 numbers # formed by array elements to # minimize the required sum num1 = "" num2 = "" # Adding elements in # Priority Queue for x in a: pq.put(x) # Checking if the priority # queue is non empty while not pq.empty(): num1 + = str (pq.get()) if not pq.empty(): num2 + = str (pq.get()) # The required sum calculated sum = int (num1) + int (num2) return sum # Driver code if __name__ = = "__main__" : arr = [ 6 , 8 , 4 , 5 , 2 , 3 ] print ( "The required sum is " , solve(arr)) # This code is contributed by rutvik_56 |
C#
// C# program to find minimum sum of two numbers // formed from all digits in a given array. using System; using System.Collections.Generic; class GFG { // Returns sum of two numbers formed // from all digits in a[] public static long solve( int [] a) { // min Heap List< int > pq = new List< int >(); // to store the 2 numbers formed by array elements to // minimize the required sum string num1 = "" ; string num2 = "" ; // Adding elements in Priority Queue foreach ( int x in a) pq.Add(x); pq.Sort(); // checking if the priority queue is non empty while (pq.Count > 0) { num1 = num1 + pq[0]; pq.RemoveAt(0); if (pq.Count > 0) { num2 = num2 + pq[0]; pq.RemoveAt(0); } } // the required sum calculated int sum = Int32.Parse(num1) + Int32.Parse(num2); return sum; } // Driver code static void Main() { int [] arr = {6, 8, 4, 5, 2, 3}; Console.WriteLine( "The required sum is " + solve(arr)); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript program to find minimum sum of two numbers // formed from all digits in a given array. // Returns sum of two numbers formed // from all digits in a[] function solve(a) { // min Heap pq=[]; // to store the 2 numbers formed by array elements to // minimize the required sum let num1= "" ; let num2= "" ; // Adding elements in Priority Queue for (let x=0;x<a.length;x++) { pq.push(a[x]); } pq.sort( function (a,b){ return b-a;}); // checking if the priority queue is non empty while (pq.length!=0) { num1+=pq.pop(); if (pq.length!=0) { num2+=pq.pop(); } } // the required sum calculated let sum=parseInt(num1)+parseInt(num2); return sum; } // Driver code let arr=[6, 8, 4, 5, 2, 3]; document.write( "The required sum is " + solve(arr)); // This code is contributed by avanitrachhadiya2155 </script> |
604
Time Complexity: O(N * log N)
Auxiliary Space: O(N)
Another method: We can follow another approach also like this, as we need two numbers such that their sum is minimum, then we would also need two minimum numbers. If we arrange our array in ascending order then we can two digits that will form the smallest numbers,
e.g., 2 3 4 5 6 8, now we can get two numbers starting from 2 and 3. First part is done now. Moving forward we have to form such that they would contain small digits, i.e. pick digits alternatively from array extend your two numbers.
i.e. 246, 358. Now if we see analyze this, then we can pick even indexed numbers for num1 and an odd number for num2.
Below is the implementation:
C++
// C++ program to find minimum sum of two numbers // formed from all digits in a given array. #include <bits/stdc++.h> using namespace std; // Returns sum of two numbers formed // from all digits in a[] int minSum( int a[], int n) { // sort the elements sort(a, a + n); int num1 = 0; int num2 = 0; for ( int i = 0; i < n; i++) { if (i % 2 == 0) num1 = num1 * 10 + a[i]; else num2 = num2 * 10 + a[i]; } return num2 + num1; } // Driver code int main() { int arr[] = { 5, 3, 0, 7, 4 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "The required sum is " << minSum(arr, n) << endl; return 0; } // This code is contributed by Sania Kumari Gupta |
C
// C program to find minimum sum of two numbers // formed from all digits in a given array. #include <stdio.h> #include <stdlib.h> int cmpfunc( const void * a, const void * b) { return (*( int *)a - *( int *)b); } // Returns sum of two numbers formed // from all digits in a[] int minSum( int a[], int n) { // sort the elements qsort (a, n, sizeof ( int ), cmpfunc); // sort(a,a+n); int num1 = 0; int num2 = 0; for ( int i = 0; i < n; i++) { if (i % 2 == 0) num1 = num1 * 10 + a[i]; else num2 = num2 * 10 + a[i]; } return num2 + num1; } // Driver code int main() { int arr[] = { 5, 3, 0, 7, 4 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "The required sum is %d" , minSum(arr, n)); return 0; } // This code is contributed by Sania Kumari Gupta |
Java
import java.util.Arrays; // Java program to find minimum sum of two numbers // formed from all digits in a given array. public class AQRQ { // Returns sum of two numbers formed // from all digits in a[] static int minSum( int a[], int n) { // sort the elements Arrays.sort(a); int num1 = 0 ; int num2 = 0 ; for ( int i = 0 ; i < n; i++) { if (i % 2 == 0 ) num1 = num1 * 10 + a[i]; else num2 = num2 * 10 + a[i]; } return num2 + num1; } // Driver code public static void main(String[] args) { int arr[] = { 5 , 3 , 0 , 7 , 4 }; int n = arr.length; System.out.println( "The required sum is " + minSum(arr, n)); } } // This code is contributed by Sania Kumari Gupta |
Python3
# Python 3 program to find minimum # sum of two numbers formed # from all digits in an given array # Returns sum of two numbers formed # from all digits in a[] def minSum(a, n): # sorted the elements a = sorted (a) num1, num2 = 0 , 0 for i in range (n): if i % 2 = = 0 : num1 = num1 * 10 + a[i] else : num2 = num2 * 10 + a[i] return num2 + num1 # Driver code arr = [ 5 , 3 , 0 , 7 , 4 ] n = len (arr) print ( "The required sum is" , minSum(arr, n)) # This code is contributed # by Mohit kumar 29 |
C#
// C# program to find minimum sum of two numbers //formed from all digits in a given array. using System; public class GFG{ //Returns sum of two numbers formed //from all digits in a[] static int minSum( int []a, int n){ // sort the elements Array.Sort(a); int num1 = 0; int num2 = 0; for ( int i = 0;i<n;i++){ if (i%2==0) num1 = num1*10+a[i]; else num2 = num2*10+a[i]; } return num2+num1; } //Driver code static public void Main (){ int []arr = {5, 3, 0, 7, 4}; int n = arr.Length; Console.WriteLine( "The required sum is " + minSum(arr, n)); } //This code is contributed by ajit. } |
PHP
<?php // PHP program to find minimum sum // of two numbers formed from all // digits in a given array. // Returns sum of two numbers formed // from all digits in a[] function minSum( $a , $n ) { // sort the elements sort( $a ); $num1 = 0; $num2 = 0; for ( $i = 0; $i < $n ; $i ++) { if ( $i % 2 == 0) $num1 = $num1 * 10 + $a [ $i ]; else $num2 = $num2 * 10 + $a [ $i ]; } return ( $num2 + $num1 ); } // Driver code $arr = array (5, 3, 0, 7, 4); $n = sizeof( $arr ); echo "The required sum is " , minSum( $arr , $n ), "\n" ; // This Code is Contributed by ajit ?> |
Javascript
<script> // JavaScript program to find minimum sum of two numbers // formed from all digits in a given array. // Returns sum of two numbers formed // from all digits in a[] function minSum(a, n){ // sort the elements a.sort(); let num1 = 0; let num2 = 0; for (let i = 0;i<n;i++){ if (i%2==0) num1 = num1*10+a[i]; else num2 = num2*10+a[i]; } return num2+num1; } let arr = [5, 3, 0, 7, 4]; let n = arr.length; document.write( "The required sum is " + minSum(arr, n)); </script> |
The required sum is 82
Time Complexity: O(N * log N)
Auxiliary Space: O(1)
This article is contributed by Prakhar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...