# Minimum steps to reach target by a Knight | Set 2

• Difficulty Level : Hard
• Last Updated : 28 Feb, 2022

Given a square chessboard of N x N size, the position of Knight and position of a target is given, the task is to find out the minimum steps a Knight will take to reach the target position. Examples :

```Input : (2, 4) - knight's position, (6, 4) - target cell
Output : 2

Input : (4, 5) (1, 1)
Output : 3```

A BFS approach to solve the above problem has already been discussed in the previous post. In this a post, a Dynamic Programming solution is discussed.
Explanation of the approach :

• Case 1 : If target is not along one row or one column of knight’s position.
Let a chess board of 8 x 8 cell. Now, let say knight is at (3, 3) and the target is at (7, 8). There are possible 8 moves from the current position of knight i.e. (2, 1), (1, 2), (4, 1), (1, 4), (5, 2), (2, 5), (5, 4), (4, 5). But, among these only two moves (5, 4) and (4, 5) will be towards the target and all other goes away from the target. So, for finding minimum steps go to either (4, 5) or (5, 4). Now, calculate the minimum steps taken from (4, 5) and (5, 4) to reach the target. This is calculated by dynamic programming. Thus, this results in the minimum steps from (3, 3) to (7, 8).
• Case 2 : If the target is along one row or one column of knight’s position.
Let a chess board of 8 x 8 cell. Now, let’s say knight is at (4, 3) and the target is at (4, 7). There are possible 8 moves but towards the target, there are only 4 moves i.e. (5, 5), (3, 5), (2, 4), (6, 4). As, (5, 5) is equivalent to (3, 5) and (2, 4) is equivalent to (6, 4). So, from these 4 points, it can be converted into 2 points. Taking (5, 5) and (6, 4) (here). Now, calculate the minimum steps taken from these two points to reach the target. This is calculated by dynamic programming. Thus, this results in the minimum steps from (4, 3) to (4, 7).

Exception : When the knight will be at corner and the target is such that the difference of x and y coordinates with knight’s position is (1, 1) or vice-versa. Then minimum steps will be 4.
Dynamic Programming Equation :

1) dp[diffOfX][diffOfY] is the minimum steps taken from knight’s position to target’s position.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX].
where, diffOfX = difference between knight’s x-coordinate and target’s x-coordinate
diffOfY = difference between knight’s y-coordinate and target’s y-coordinate

Below is the implementation of above approach:

## C++

 `// C++ code for minimum steps for` `// a knight to reach target position` `#include `   `using` `namespace` `std;`   `// initializing the matrix.` `int` `dp = { 0 };`   `int` `getsteps(``int` `x, ``int` `y, ` `             ``int` `tx, ``int` `ty)` `{` `    ``// if knight is on the target ` `    ``// position return 0.` `    ``if` `(x == tx && y == ty)` `        ``return` `dp;` `    ``else` `{` `        `  `        ``// if already calculated then return` `        ``// that value. Taking absolute difference.` `        ``if` `(dp[``abs``(x - tx)][``abs``(y - ty)] != 0)` `            ``return` `dp[``abs``(x - tx)][``abs``(y - ty)];` `            `  `        ``else` `{`   `            ``// there will be two distinct positions` `            ``// from the knight towards a target.` `            ``// if the target is in same row or column` `            ``// as of knight than there can be four` `            ``// positions towards the target but in that` `            ``// two would be the same and the other two` `            ``// would be the same.` `            ``int` `x1, y1, x2, y2;` `            `  `            ``// (x1, y1) and (x2, y2) are two positions.` `            ``// these can be different according to situation.` `            ``// From position of knight, the chess board can be` `            ``// divided into four blocks i.e.. N-E, E-S, S-W, W-N .` `            ``if` `(x <= tx) {` `                ``if` `(y <= ty) {` `                    ``x1 = x + 2;` `                    ``y1 = y + 1;` `                    ``x2 = x + 1;` `                    ``y2 = y + 2;` `                ``} ``else` `{` `                    ``x1 = x + 2;` `                    ``y1 = y - 1;` `                    ``x2 = x + 1;` `                    ``y2 = y - 2;` `                ``}` `            ``} ``else` `{` `                ``if` `(y <= ty) {` `                    ``x1 = x - 2;` `                    ``y1 = y + 1;` `                    ``x2 = x - 1;` `                    ``y2 = y + 2;` `                ``} ``else` `{` `                    ``x1 = x - 2;` `                    ``y1 = y - 1;` `                    ``x2 = x - 1;` `                    ``y2 = y - 2;` `                ``}` `            ``}` `            `  `            ``// ans will be, 1 + minimum of steps ` `            ``// required from (x1, y1) and (x2, y2).` `            ``dp[``abs``(x - tx)][``abs``(y - ty)] = ` `                           ``min(getsteps(x1, y1, tx, ty), ` `                           ``getsteps(x2, y2, tx, ty)) + 1;` `                           `  `            ``// exchanging the coordinates x with y of both` `            ``// knight and target will result in same ans.` `            ``dp[``abs``(y - ty)][``abs``(x - tx)] = ` `                           ``dp[``abs``(x - tx)][``abs``(y - ty)];` `            ``return` `dp[``abs``(x - tx)][``abs``(y - ty)];` `        ``}` `    ``}` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `i, n, x, y, tx, ty, ans;` `    `  `    ``// size of chess board n*n` `    ``n = 100;` `    `  `    ``// (x, y) coordinate of the knight.` `    ``// (tx, ty) coordinate of the target position.` `    ``x = 4;` `    ``y = 5;` `    ``tx = 1;` `    ``ty = 1;`   `    ``// (Exception) these are the four corner points ` `    ``// for which the minimum steps is 4.` `    ``if` `((x == 1 && y == 1 && tx == 2 && ty == 2) || ` `        ``(x == 2 && y == 2 && tx == 1 && ty == 1))` `            ``ans = 4;` `    ``else` `if` `((x == 1 && y == n && tx == 2 && ty == n - 1) ||` `             ``(x == 2 && y == n - 1 && tx == 1 && ty == n))` `                ``ans = 4;` `    ``else` `if` `((x == n && y == 1 && tx == n - 1 && ty == 2) || ` `             ``(x == n - 1 && y == 2 && tx == n && ty == 1))` `                ``ans = 4;` `    ``else` `if` `((x == n && y == n && tx == n - 1 && ty == n - 1) || ` `             ``(x == n - 1 && y == n - 1 && tx == n && ty == n))` `                ``ans = 4;` `    ``else` `{` `        ``// dp[a][b], here a, b is the difference of` `        ``// x & tx and y & ty respectively.` `        ``dp = 3;` `        ``dp = 3;` `        ``dp = 2;` `        ``dp = 2;` `        ``dp = 2;` `        ``dp = 1;` `        ``dp = 1;`   `        ``ans = getsteps(x, y, tx, ty);` `    ``}`   `    ``cout << ans << endl;`   `    ``return` `0;` `}`

## Java

 `//Java code for minimum steps for ` `// a knight to reach target position ` `public` `class` `GFG {`   `// initializing the matrix. ` `    ``static` `int` `dp[][] = ``new` `int``[``8``][``8``];`   `    ``static` `int` `getsteps(``int` `x, ``int` `y,` `            ``int` `tx, ``int` `ty) {` `        ``// if knight is on the target ` `        ``// position return 0. ` `        ``if` `(x == tx && y == ty) {` `            ``return` `dp[``0``][``0``];` `        ``} ``else` `// if already calculated then return ` `        ``// that value. Taking absolute difference. ` `        ``if` `(dp[ Math.abs(x - tx)][ Math.abs(y - ty)] != ``0``) {` `            ``return` `dp[ Math.abs(x - tx)][ Math.abs(y - ty)];` `        ``} ``else` `{`   `            ``// there will be two distinct positions ` `            ``// from the knight towards a target. ` `            ``// if the target is in same row or column ` `            ``// as of knight than there can be four ` `            ``// positions towards the target but in that ` `            ``// two would be the same and the other two ` `            ``// would be the same. ` `            ``int` `x1, y1, x2, y2;`   `            ``// (x1, y1) and (x2, y2) are two positions. ` `            ``// these can be different according to situation. ` `            ``// From position of knight, the chess board can be ` `            ``// divided into four blocks i.e.. N-E, E-S, S-W, W-N . ` `            ``if` `(x <= tx) {` `                ``if` `(y <= ty) {` `                    ``x1 = x + ``2``;` `                    ``y1 = y + ``1``;` `                    ``x2 = x + ``1``;` `                    ``y2 = y + ``2``;` `                ``} ``else` `{` `                    ``x1 = x + ``2``;` `                    ``y1 = y - ``1``;` `                    ``x2 = x + ``1``;` `                    ``y2 = y - ``2``;` `                ``}` `            ``} ``else` `if` `(y <= ty) {` `                ``x1 = x - ``2``;` `                ``y1 = y + ``1``;` `                ``x2 = x - ``1``;` `                ``y2 = y + ``2``;` `            ``} ``else` `{` `                ``x1 = x - ``2``;` `                ``y1 = y - ``1``;` `                ``x2 = x - ``1``;` `                ``y2 = y - ``2``;` `            ``}`   `            ``// ans will be, 1 + minimum of steps ` `            ``// required from (x1, y1) and (x2, y2). ` `            ``dp[ Math.abs(x - tx)][ Math.abs(y - ty)]` `                    ``= Math.min(getsteps(x1, y1, tx, ty),` `                            ``getsteps(x2, y2, tx, ty)) + ``1``;`   `            ``// exchanging the coordinates x with y of both ` `            ``// knight and target will result in same ans. ` `            ``dp[ Math.abs(y - ty)][ Math.abs(x - tx)]` `                    ``= dp[ Math.abs(x - tx)][ Math.abs(y - ty)];` `            ``return` `dp[ Math.abs(x - tx)][ Math.abs(y - ty)];` `        ``}` `    ``}`   `// Driver Code ` `    ``static` `public` `void` `main(String[] args) {` `        ``int` `i, n, x, y, tx, ty, ans;`   `        ``// size of chess board n*n ` `        ``n = ``100``;`   `        ``// (x, y) coordinate of the knight. ` `        ``// (tx, ty) coordinate of the target position. ` `        ``x = ``4``;` `        ``y = ``5``;` `        ``tx = ``1``;` `        ``ty = ``1``;`   `        ``// (Exception) these are the four corner points ` `        ``// for which the minimum steps is 4. ` `        ``if` `((x == ``1` `&& y == ``1` `&& tx == ``2` `&& ty == ``2``)` `                ``|| (x == ``2` `&& y == ``2` `&& tx == ``1` `&& ty == ``1``)) {` `            ``ans = ``4``;` `        ``} ``else` `if` `((x == ``1` `&& y == n && tx == ``2` `&& ty == n - ``1``)` `                ``|| (x == ``2` `&& y == n - ``1` `&& tx == ``1` `&& ty == n)) {` `            ``ans = ``4``;` `        ``} ``else` `if` `((x == n && y == ``1` `&& tx == n - ``1` `&& ty == ``2``)` `                ``|| (x == n - ``1` `&& y == ``2` `&& tx == n && ty == ``1``)) {` `            ``ans = ``4``;` `        ``} ``else` `if` `((x == n && y == n && tx == n - ``1` `&& ty == n - ``1``)` `                ``|| (x == n - ``1` `&& y == n - ``1` `&& tx == n && ty == n)) {` `            ``ans = ``4``;` `        ``} ``else` `{` `            ``// dp[a][b], here a, b is the difference of ` `            ``// x & tx and y & ty respectively. ` `            ``dp[``1``][``0``] = ``3``;` `            ``dp[``0``][``1``] = ``3``;` `            ``dp[``1``][``1``] = ``2``;` `            ``dp[``2``][``0``] = ``2``;` `            ``dp[``0``][``2``] = ``2``;` `            ``dp[``2``][``1``] = ``1``;` `            ``dp[``1``][``2``] = ``1``;`   `            ``ans = getsteps(x, y, tx, ty);` `        ``}`   `        ``System.out.println(ans);` `    ``}` `}`   `/*This code is contributed by PrinciRaj1992*/`

## Python3

 `# Python3 code for minimum steps for` `# a knight to reach target position`   `# initializing the matrix.` `dp ``=` `[[``0` `for` `i ``in` `range``(``8``)] ``for` `j ``in` `range``(``8``)];`     `def` `getsteps(x, y, tx, ty):` `    `  `    ``# if knight is on the target` `    ``# position return 0.` `    ``if` `(x ``=``=` `tx ``and` `y ``=``=` `ty):` `        ``return` `dp[``0``][``0``];` `    `  `    ``# if already calculated then return` `    ``# that value. Taking absolute difference.` `    ``elif``(dp[``abs``(x ``-` `tx)][``abs``(y ``-` `ty)] !``=` `0``):` `        ``return` `dp[``abs``(x ``-` `tx)][``abs``(y ``-` `ty)];` `    ``else``:`   `        ``# there will be two distinct positions` `        ``# from the knight towards a target.` `        ``# if the target is in same row or column` `        ``# as of knight than there can be four` `        ``# positions towards the target but in that` `        ``# two would be the same and the other two` `        ``# would be the same.` `        ``x1, y1, x2, y2 ``=` `0``, ``0``, ``0``, ``0``;`   `        ``# (x1, y1) and (x2, y2) are two positions.` `        ``# these can be different according to situation.` `        ``# From position of knight, the chess board can be` `        ``# divided into four blocks i.e.. N-E, E-S, S-W, W-N .` `        ``if` `(x <``=` `tx):` `            ``if` `(y <``=` `ty):` `                ``x1 ``=` `x ``+` `2``;` `                ``y1 ``=` `y ``+` `1``;` `                ``x2 ``=` `x ``+` `1``;` `                ``y2 ``=` `y ``+` `2``;` `            ``else``:` `                ``x1 ``=` `x ``+` `2``;` `                ``y1 ``=` `y ``-` `1``;` `                ``x2 ``=` `x ``+` `1``;` `                ``y2 ``=` `y ``-` `2``;`   `        ``elif` `(y <``=` `ty):` `            ``x1 ``=` `x ``-` `2``;` `            ``y1 ``=` `y ``+` `1``;` `            ``x2 ``=` `x ``-` `1``;` `            ``y2 ``=` `y ``+` `2``;` `        ``else``:` `            ``x1 ``=` `x ``-` `2``;` `            ``y1 ``=` `y ``-` `1``;` `            ``x2 ``=` `x ``-` `1``;` `            ``y2 ``=` `y ``-` `2``;`   `        ``# ans will be, 1 + minimum of steps` `        ``# required from (x1, y1) and (x2, y2).` `        ``dp[``abs``(x ``-` `tx)][``abs``(y ``-` `ty)] ``=` `\` `        ``min``(getsteps(x1, y1, tx, ty), ` `        ``getsteps(x2, y2, tx, ty)) ``+` `1``;`   `        ``# exchanging the coordinates x with y of both` `        ``# knight and target will result in same ans.` `        ``dp[``abs``(y ``-` `ty)][``abs``(x ``-` `tx)] ``=` `\` `        ``dp[``abs``(x ``-` `tx)][``abs``(y ``-` `ty)];` `        ``return` `dp[``abs``(x ``-` `tx)][``abs``(y ``-` `ty)];`   `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:`   `    ``# size of chess board n*n` `    ``n ``=` `100``;`   `    ``# (x, y) coordinate of the knight.` `    ``# (tx, ty) coordinate of the target position.` `    ``x ``=` `4``;` `    ``y ``=` `5``;` `    ``tx ``=` `1``;` `    ``ty ``=` `1``;`   `    ``# (Exception) these are the four corner points` `    ``# for which the minimum steps is 4.` `    ``if` `((x ``=``=` `1` `and` `y ``=``=` `1` `and` `tx ``=``=` `2` `and` `ty ``=``=` `2``) ``or` `            ``(x ``=``=` `2` `and` `y ``=``=` `2` `and` `tx ``=``=` `1` `and` `ty ``=``=` `1``)):` `        ``ans ``=` `4``;` `    ``elif` `((x ``=``=` `1` `and` `y ``=``=` `n ``and` `tx ``=``=` `2` `and` `ty ``=``=` `n ``-` `1``) ``or` `        ``(x ``=``=` `2` `and` `y ``=``=` `n ``-` `1` `and` `tx ``=``=` `1` `and` `ty ``=``=` `n)):` `        ``ans ``=` `4``;` `    ``elif` `((x ``=``=` `n ``and` `y ``=``=` `1` `and` `tx ``=``=` `n ``-` `1` `and` `ty ``=``=` `2``) ``or` `        ``(x ``=``=` `n ``-` `1` `and` `y ``=``=` `2` `and` `tx ``=``=` `n ``and` `ty ``=``=` `1``)):` `        ``ans ``=` `4``;` `    ``elif` `((x ``=``=` `n ``and` `y ``=``=` `n ``and` `tx ``=``=` `n ``-` `1` `and` `ty ``=``=` `n ``-` `1``)` `        ``or` `(x ``=``=` `n ``-` `1` `and` `y ``=``=` `n ``-` `1` `and` `tx ``=``=` `n ``and` `ty ``=``=` `n)):` `        ``ans ``=` `4``;` `    ``else``:`   `        ``# dp[a][b], here a, b is the difference of` `        ``# x & tx and y & ty respectively.` `        ``dp[``1``][``0``] ``=` `3``;` `        ``dp[``0``][``1``] ``=` `3``;` `        ``dp[``1``][``1``] ``=` `2``;` `        ``dp[``2``][``0``] ``=` `2``;` `        ``dp[``0``][``2``] ``=` `2``;` `        ``dp[``2``][``1``] ``=` `1``;` `        ``dp[``1``][``2``] ``=` `1``;`   `        ``ans ``=` `getsteps(x, y, tx, ty);`   `    ``print``(ans);`   `# This code is contributed by PrinciRaj1992`

## C#

 `// C# code for minimum steps for ` `// a knight to reach target position `   `using` `System;` `public` `class` `GFG{`     `// initializing the matrix. ` `    ``static` `int` `[ , ]dp = ``new` `int``[8 , 8]; `   `    ``static` `int` `getsteps(``int` `x, ``int` `y, ` `            ``int` `tx, ``int` `ty) { ` `        ``// if knight is on the target ` `        ``// position return 0. ` `        ``if` `(x == tx && y == ty) { ` `            ``return` `dp[0 , 0]; ` `        ``} ``else` `// if already calculated then return ` `        ``// that value. Taking  Absolute difference. ` `        ``if` `(dp[ Math. Abs(x - tx) , Math. Abs(y - ty)] != 0) { ` `            ``return` `dp[ Math. Abs(x - tx) , Math. Abs(y - ty)]; ` `        ``} ``else` `{ `   `            ``// there will be two distinct positions ` `            ``// from the knight towards a target. ` `            ``// if the target is in same row or column ` `            ``// as of knight than there can be four ` `            ``// positions towards the target but in that ` `            ``// two would be the same and the other two ` `            ``// would be the same. ` `            ``int` `x1, y1, x2, y2; `   `            ``// (x1, y1) and (x2, y2) are two positions. ` `            ``// these can be different according to situation. ` `            ``// From position of knight, the chess board can be ` `            ``// divided into four blocks i.e.. N-E, E-S, S-W, W-N . ` `            ``if` `(x <= tx) { ` `                ``if` `(y <= ty) { ` `                    ``x1 = x + 2; ` `                    ``y1 = y + 1; ` `                    ``x2 = x + 1; ` `                    ``y2 = y + 2; ` `                ``} ``else` `{ ` `                    ``x1 = x + 2; ` `                    ``y1 = y - 1; ` `                    ``x2 = x + 1; ` `                    ``y2 = y - 2; ` `                ``} ` `            ``} ``else` `if` `(y <= ty) { ` `                ``x1 = x - 2; ` `                ``y1 = y + 1; ` `                ``x2 = x - 1; ` `                ``y2 = y + 2; ` `            ``} ``else` `{ ` `                ``x1 = x - 2; ` `                ``y1 = y - 1; ` `                ``x2 = x - 1; ` `                ``y2 = y - 2; ` `            ``} `   `            ``// ans will be, 1 + minimum of steps ` `            ``// required from (x1, y1) and (x2, y2). ` `            ``dp[ Math. Abs(x - tx) , Math. Abs(y - ty)] ` `                    ``= Math.Min(getsteps(x1, y1, tx, ty), ` `                            ``getsteps(x2, y2, tx, ty)) + 1; `   `            ``// exchanging the coordinates x with y of both ` `            ``// knight and target will result in same ans. ` `            ``dp[ Math. Abs(y - ty) , Math. Abs(x - tx)] ` `                    ``= dp[ Math. Abs(x - tx) , Math. Abs(y - ty)]; ` `            ``return` `dp[ Math. Abs(x - tx) , Math. Abs(y - ty)]; ` `        ``} ` `    ``} `   `// Driver Code ` `    ``static` `public` `void` `Main() { ` `        ``int` `i, n, x, y, tx, ty, ans; `   `        ``// size of chess board n*n ` `        ``n = 100; `   `        ``// (x, y) coordinate of the knight. ` `        ``// (tx, ty) coordinate of the target position. ` `        ``x = 4; ` `        ``y = 5; ` `        ``tx = 1; ` `        ``ty = 1; `   `        ``// (Exception) these are the four corner points ` `        ``// for which the minimum steps is 4. ` `        ``if` `((x == 1 && y == 1 && tx == 2 && ty == 2) ` `                ``|| (x == 2 && y == 2 && tx == 1 && ty == 1)) { ` `            ``ans = 4; ` `        ``} ``else` `if` `((x == 1 && y == n && tx == 2 && ty == n - 1) ` `                ``|| (x == 2 && y == n - 1 && tx == 1 && ty == n)) { ` `            ``ans = 4; ` `        ``} ``else` `if` `((x == n && y == 1 && tx == n - 1 && ty == 2) ` `                ``|| (x == n - 1 && y == 2 && tx == n && ty == 1)) { ` `            ``ans = 4; ` `        ``} ``else` `if` `((x == n && y == n && tx == n - 1 && ty == n - 1) ` `                ``|| (x == n - 1 && y == n - 1 && tx == n && ty == n)) { ` `            ``ans = 4; ` `        ``} ``else` `{ ` `            ``// dp[a , b], here a, b is the difference of ` `            ``// x & tx and y & ty respectively. ` `            ``dp[1 , 0] = 3; ` `            ``dp[0 , 1] = 3; ` `            ``dp[1 , 1] = 2; ` `            ``dp[2 , 0] = 2; ` `            ``dp[0 , 2] = 2; ` `            ``dp[2 , 1] = 1; ` `            ``dp[1 , 2] = 1; `   `            ``ans = getsteps(x, y, tx, ty); ` `        ``} `   `        ``Console.WriteLine(ans); ` `    ``} ` `} `   `/*This code is contributed by PrinciRaj1992*/`

## Javascript

 ``

Output:

`3`

Time Complexity: O(N * M) where N is the total number of rows and M is the total number of columns
Auxiliary Space: O(N * M)

My Personal Notes arrow_drop_up
Recommended Articles
Page :