Minimum squares to cover a rectangle
Given a rectangle with length l and breadth b, we need to find the minimum number of squares that can cover the surface of the rectangle, given that each square has a side of length a. It is allowed to cover the surface larger than the rectangle, but the rectangle has to be covered. It is not allowed to break the square.
Examples:
Input : 1 2 3 Output :1 We have a 3x3 square and we need to make a rectangle of size 1x2. So we need only 1 square to cover the rectangle.
Input : 11 23 14 Output :2
The only way to actually fill the rectangle optimally is to arrange each square such that it is parallel to the sides of the rectangle. So we just need to find the number of squares to fully cover the length and breadth of the rectangle.
The length of the rectangle is l, and if the side length of the square is a divided l, then there must be l/a squares to cover the full length of l. If l isn’t divisible by a, we need to add 1 to l/a, to round it down. For this, we can use the ceil function, as ceil(x) returns the least integer which is above or equal to x.
We can do the same with the rectangle width and take the number of squares across the width to be ceil(b/a).
So, total number of squares=ceil(m/a) * ceil(n/a).
C++
// C++ program to find the minimum number // of squares to cover the surface of the // rectangle with given dimensions #include <bits/stdc++.h> using namespace std; int squares( int l, int b, int a) { // function to count // the number of squares that can // cover the surface of the rectangle return ceil (l / ( double )a) * ceil (b / ( double )a); } // Driver code int main() { int l = 11, b = 23, a = 14; cout << squares(l, b, a) << endl; return 0; } |
Java
// Java program to find the minimum number // of squares to cover the surface of the // rectangle with given dimensions class GFG { static int squares( int l, int b, int a) { // function to count // the number of squares that can // cover the surface of the rectangle return ( int )(Math.ceil(l / ( double )a) * Math.ceil(b / ( double )a)); } // Driver code public static void main(String[] args) { int l = 11 , b = 23 , a = 14 ; System.out.println(squares(l, b, a)); } } // This code is contributed by ChitraNayal |
Python 3
# Python3 program to find the minimum number # of squares to cover the surface of the # rectangle with given dimensions import math def squares(l, b, a): # function to count # the number of squares that can # cover the surface of the rectangle return math.ceil(l / a) * math.ceil(b / a) # Driver code if __name__ = = "__main__" : l = 11 b = 23 a = 14 print (squares(l, b, a)) # This code is contributed # by ChitraNayal |
C#
// C# program to find the minimum number // of squares to cover the surface of the // rectangle with given dimensions using System; class GFG { static int squares( int l, int b, int a) { // function to count // the number of squares that can // cover the surface of the rectangle return ( int )(Math.Ceiling(l / ( double )a) * Math.Ceiling(b / ( double )a)); } // Driver code public static void Main() { int l = 11, b = 23, a = 14; Console.Write(squares(l, b, a)); } } // This code is contributed by ChitraNayal |
PHP
<?php // PHP program to find the minimum number // of squares to cover the surface of the // rectangle with given dimensions function squares( $l , $b , $a ) { // function to count // the number of squares that can // cover the surface of the rectangle return ceil ( $l / (double) $a ) * ceil ( $b / (double) $a ); } // Driver code $l = 11; $b = 23; $a = 14; echo squares( $l , $b , $a ); // This code is contributed // by ChitraNayal ?> |
Javascript
<script> // javascript program to find the minimum number // of squares to cover the surface of the // rectangle with given dimensions function squares(l , b , a) { // function to count // the number of squares that can // cover the surface of the rectangle return parseInt(Math.ceil(l / a) * Math.ceil(b / a)); } // Driver code var l = 11, b = 23, a = 14; document.write(squares(l, b, a)); // This code is contributed by Amit Katiyar </script> |
2
Time complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...