Minimum removals to segregate all 0s and 1s such that count of 0s and 1s are equal
Given a binary string S of length N, the task is to find the minimum number of removals to segregate all the 0s and all the 1s such that all the 0s are before all the 1s and their count are also same.
Examples:
Input: S = 01001101
Output: 2
Explanation: If you remove the 1 at index 1 and
0 at index 6, then the string becomes 000111.Input: S = “01”
Output: 0
Approach: The problem can be solved based on the concept of prefix sum:
Instead of trying to find the minimum number of removals find the maximum length subsequence which satisfies the condition.
To do this,
- Firstly calculate prefix sum for 0s and suffix sum for 1s and
- For any index i find the maximum length of the string that can be formed using 0s from the left of i and 1s from the right of i when their count are equal.
- The maximum among these lengths, is the subsequence of maximum size satisfying the criteria.
- The remaining elements must be removed.
Follow the below steps to solve the problem:
- Store prefix count of ‘0‘ in a vector left.
- Store Suffix count of ‘1‘ in a vector right.
- Initialize a variable Max = 0.
- Run a loop from index 1 to N-1.
- Check if left[i-1] = right[i], then update, Max = max(Max, 2*right[i]).
- Return N-Max.
Below is the implementation of the above approach:
C++
// C++ code to implement the above approach #include <bits/stdc++.h> using namespace std; // Function to remove minimum number // of brackets to make the string beautiful int findMinRemoval(string s) { int n = s.size(); // Stores count of 0 from left to right vector< int > left(n); // Stores count of 1 from right to left vector< int > right(n); if (s[0] == '0' ) left[0] = 1; else left[0] = 0; // Calculate the prefix count of '0' // at every index for ( int i = 1; i < n; i++) { if (s[i] == '0' ) left[i] = left[i - 1] + 1; else left[i] = left[i - 1]; } if (s[n - 1] == '1' ) right[n - 1] = 1; else right[n - 1] = 0; // Calculate the suffix count of '1' // at every index for ( int i = n - 2; i >= 0; i--) { if (s[i] == '1' ) right[i] = right[i + 1] + 1; else right[i] = right[i + 1]; } int Max = 0; // Check for max length beautiful string for ( int i = 1; i < n; i++) { if (left[i - 1] == right[i]) Max = max(Max, 2 * right[i]); } return n - Max; } // Driver Code int main() { string S = "01001101" ; // Function call cout << findMinRemoval(S); return 0; } |
Java
// Java code to implement the above approach import java.io.*; class GFG { // Function to remove minimum number // of brackets to make the string beautiful public static int findMinRemoval(String s) { int n = s.length(); // Stores count of 0 from left to right int left[] = new int [n]; // Stores count of 1 from right to left int right[] = new int [n]; if (s.charAt( 0 ) == '0' ) left[ 0 ] = 1 ; else left[ 0 ] = 0 ; // Calculate the prefix count of '0' // at every index for ( int i = 1 ; i < n; i++) { if (s.charAt(i) == '0' ) left[i] = left[i - 1 ] + 1 ; else left[i] = left[i - 1 ]; } if (s.charAt(n - 1 ) == '1' ) right[n - 1 ] = 1 ; else right[n - 1 ] = 0 ; // Calculate the suffix count of '1' // at every index for ( int i = n - 2 ; i >= 0 ; i--) { if (s.charAt(i) == '1' ) right[i] = right[i + 1 ] + 1 ; else right[i] = right[i + 1 ]; } int Max = 0 ; // Check for max length beautiful string for ( int i = 1 ; i < n; i++) { if (left[i - 1 ] == right[i]) Max = Math.max(Max, 2 * right[i]); } return n - Max; } // Driver Code public static void main(String[] args) { String S = "01001101" ; // Function call System.out.print(findMinRemoval(S)); } } // This code is contributed by Rohit Pradhan |
Python3
# Python3 code to implement the above approach # Function to remove minimum number # of brackets to make the string beautiful def findMinRemoval(s): n = len (s) # Stores count of 0 from left to right left = [ 0 ] * n # Stores count of 1 from right to left right = [ 0 ] * n if (s[ 0 ] = = '0' ): left[ 0 ] = 1 else : left[ 0 ] = 0 # Calculate the prefix count of '0' # at every index for i in range ( 1 , n): if (s[i] = = '0' ): left[i] = left[i - 1 ] + 1 else : left[i] = left[i - 1 ]; if (s[n - 1 ] = = '1' ): right[n - 1 ] = 1 else : right[n - 1 ] = 0 # Calculate the suffix count of '1' # at every index for i in range (n - 2 , - 1 , - 1 ): if (s[i] = = '1' ): right[i] = right[i + 1 ] + 1 else : right[i] = right[i + 1 ] Max = 0 # Check for max length beautiful string for i in range ( 1 ,n): if (left[i - 1 ] = = right[i]): Max = max ( Max , 2 * right[i]) return n - Max ; # Driver Code if __name__ = = "__main__" : S = "01001101" # Function call print (findMinRemoval(S)) # This code is contributed by hrithikgarg03188. |
C#
// C# program for above approach: using System; class GFG { // Function to remove minimum number // of brackets to make the string beautiful static int findMinRemoval( string s) { int n = s.Length; // Stores count of 0 from left to right int [] left = new int [n]; // Stores count of 1 from right to left int [] right = new int [n]; if (s[0] == '0' ) left[0] = 1; else left[0] = 0; // Calculate the prefix count of '0' // at every index for ( int i = 1; i < n; i++) { if (s[i] == '0' ) left[i] = left[i - 1] + 1; else left[i] = left[i - 1]; } if (s[n - 1] == '1' ) right[n - 1] = 1; else right[n - 1] = 0; // Calculate the suffix count of '1' // at every index for ( int i = n - 2; i >= 0; i--) { if (s[i] == '1' ) right[i] = right[i + 1] + 1; else right[i] = right[i + 1]; } int Maxx = 0; // Check for max length beautiful string for ( int i = 1; i < n; i++) { if (left[i - 1] == right[i]) Maxx = Math.Max(Maxx, 2 * right[i]); } return n - Maxx; } // Driver Code public static void Main() { String S = "01001101" ; // Function call Console.Write(findMinRemoval(S)); } } // This code is contributed by code_hunt. |
Javascript
<script> // JavaScript code to implement the above approach // Function to remove minimum number // of brackets to make the string beautiful const findMinRemoval = (s) => { let n = s.length; // Stores count of 0 from left to right let left = new Array(n).fill(0); // Stores count of 1 from right to left let right = new Array(n).fill(0); if (s[0] == '0' ) left[0] = 1; else left[0] = 0; // Calculate the prefix count of '0' // at every index for (let i = 1; i < n; i++) { if (s[i] == '0' ) left[i] = left[i - 1] + 1; else left[i] = left[i - 1]; } if (s[n - 1] == '1' ) right[n - 1] = 1; else right[n - 1] = 0; // Calculate the suffix count of '1' // at every index for (let i = n - 2; i >= 0; i--) { if (s[i] == '1' ) right[i] = right[i + 1] + 1; else right[i] = right[i + 1]; } let Max = 0; // Check for max length beautiful string for (let i = 1; i < n; i++) { if (left[i - 1] == right[i]) Max = Math.max(Max, 2 * right[i]); } return n - Max; } // Driver Code let S = "01001101" ; // Function call document.write(findMinRemoval(S)); // This code is contributed by rakeshsahni </script> |
Output
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...