Minimum Possible value of |ai + aj – k| for given array and k.
You are given an array of n integer and an integer K. Find the number of total unordered pairs {i, j} such that absolute value of (ai + aj – K), i.e., |ai + aj – k| is minimal possible, where i != j.
Examples:
Input: arr[] = {0, 4, 6, 2, 4}, K = 7
Output: Minimal Value = 1, Total Pairs = 5
Explanation: Pairs resulting minimal value are : {a1, a3}, {a2, a4}, {a2, a5}, {a3, a4}, {a4, a5}
Input: arr[] = {4, 6, 2, 4} , K = 9
Output: Minimal Value = 1, Total Pairs = 4
Explanation: Pairs resulting minimal value are : {a1, a2}, {a1, a4}, {a2, a3}, {a2, a4}
A simple solution is iterate over all possible pairs and for each pair we will check whether the value of (ai + aj – K) is smaller than our current smallest value of not. So as per result of above condition we have total of three cases :
- abs( ai + aj – K) > smallest : do nothing as this pair will not count in minimal possible value.
- abs(ai + aj – K) = smallest : increment the count of pair resulting minimal possible value.
- abs( ai + aj – K) < smallest : update the smallest value and set count to 1.
Below is the implementation of the above approach:
C++
// CPP program to find number of pairs and minimal // possible value #include <bits/stdc++.h> using namespace std; // function for finding pairs and min value void pairs( int arr[], int n, int k) { // initialize smallest and count int smallest = INT_MAX; int count = 0; // iterate over all pairs for ( int i = 0; i < n; i++) for ( int j = i + 1; j < n; j++) { // is abs value is smaller than smallest // update smallest and reset count to 1 if ( abs (arr[i] + arr[j] - k) < smallest) { smallest = abs (arr[i] + arr[j] - k); count = 1; } // if abs value is equal to smallest // increment count value else if ( abs (arr[i] + arr[j] - k) == smallest) count++; } // print result cout << "Minimal Value = " << smallest << "\n" ; cout << "Total Pairs = " << count << "\n" ; } // driver program int main() { int arr[] = { 3, 5, 7, 5, 1, 9, 9 }; int k = 12; int n = sizeof (arr) / sizeof (arr[0]); pairs(arr, n, k); return 0; } |
Java
// Java program to find number of pairs // and minimal possible value import java.util.*; class GFG { // function for finding pairs and min value static void pairs( int arr[], int n, int k) { // initialize smallest and count int smallest = Integer.MAX_VALUE; int count = 0 ; // iterate over all pairs for ( int i = 0 ; i < n; i++) for ( int j = i + 1 ; j < n; j++) { // is abs value is smaller than // smallest update smallest and // reset count to 1 if (Math.abs(arr[i] + arr[j] - k) < smallest) { smallest = Math.abs(arr[i] + arr[j] - k); count = 1 ; } // if abs value is equal to smallest // increment count value else if (Math.abs(arr[i] + arr[j] - k) == smallest) count++; } // print result System.out.println( "Minimal Value = " + smallest); System.out.println( "Total Pairs = " + count); } /* Driver program to test above function */ public static void main(String[] args) { int arr[] = { 3 , 5 , 7 , 5 , 1 , 9 , 9 }; int k = 12 ; int n = arr.length; pairs(arr, n, k); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python3 program to find number of pairs # and minimal possible value # function for finding pairs and min value def pairs(arr, n, k): # initialize smallest and count smallest = 999999999999 count = 0 # iterate over all pairs for i in range (n): for j in range (i + 1 , n): # is abs value is smaller than smallest # update smallest and reset count to 1 if abs (arr[i] + arr[j] - k) < smallest: smallest = abs (arr[i] + arr[j] - k) count = 1 # if abs value is equal to smallest # increment count value elif abs (arr[i] + arr[j] - k) = = smallest: count + = 1 # print result print ( "Minimal Value = " , smallest) print ( "Total Pairs = " , count) # Driver Code if __name__ = = '__main__' : arr = [ 3 , 5 , 7 , 5 , 1 , 9 , 9 ] k = 12 n = len (arr) pairs(arr, n, k) # This code is contributed by PranchalK |
C#
// C# program to find number // of pairs and minimal // possible value using System; class GFG { // function for finding // pairs and min value static void pairs( int [] arr, int n, int k) { // initialize // smallest and count int smallest = 0; int count = 0; // iterate over all pairs for ( int i = 0; i < n; i++) for ( int j = i + 1; j < n; j++) { // is abs value is smaller // than smallest update // smallest and reset // count to 1 if (Math.Abs(arr[i] + arr[j] - k) < smallest) { smallest = Math.Abs(arr[i] + arr[j] - k); count = 1; } // if abs value is equal // to smallest increment // count value else if (Math.Abs(arr[i] + arr[j] - k) == smallest) count++; } // print result Console.WriteLine( "Minimal Value = " + smallest); Console.WriteLine( "Total Pairs = " + count); } // Driver Code public static void Main() { int [] arr = { 3, 5, 7, 5, 1, 9, 9 }; int k = 12; int n = arr.Length; pairs(arr, n, k); } } // This code is contributed // by anuj_67. |
PHP
<?php // PHP program to find number of // pairs and minimal possible value // function for finding pairs // and min value function pairs( $arr , $n , $k ) { // initialize smallest and count $smallest = PHP_INT_MAX; $count = 0; // iterate over all pairs for ( $i = 0; $i < $n ; $i ++) for ( $j = $i + 1; $j < $n ; $j ++) { // is abs value is smaller than smallest // update smallest and reset count to 1 if ( abs ( $arr [ $i ] + $arr [ $j ] - $k ) < $smallest ) { $smallest = abs ( $arr [ $i ] + $arr [ $j ] - $k ); $count = 1; } // if abs value is equal to smallest // increment count value else if ( abs ( $arr [ $i ] + $arr [ $j ] - $k ) == $smallest ) $count ++; } // print result echo "Minimal Value = " , $smallest , "\n" ; echo "Total Pairs = " , $count , "\n" ; } // Driver Code $arr = array (3, 5, 7, 5, 1, 9, 9); $k = 12; $n = sizeof( $arr ); pairs( $arr , $n , $k ); // This code is contributed by aj_36 ?> |
Javascript
<script> // Javascript program to find number of pairs and minimal // possible value // function for finding pairs and min value function pairs(arr, n, k) { // initialize smallest and count var smallest = 1000000000; var count=0; // iterate over all pairs for ( var i=0; i<n; i++) for ( var j=i+1; j<n; j++) { // is Math.abs value is smaller than smallest // update smallest and reset count to 1 if ( Math.abs(arr[i] + arr[j] - k) < smallest ) { smallest = Math.abs(arr[i] + arr[j] - k); count = 1; } // if Math.abs value is equal to smallest // increment count value else if (Math.abs(arr[i] + arr[j] - k) == smallest) count++; } // print result document.write( "Minimal Value = " + smallest + "<br>" ); document.write( "Total Pairs = " + count + "<br>" ); } // driver program var arr = [3, 5, 7, 5, 1, 9, 9]; var k = 12; var n = arr.length; pairs(arr, n, k); </script> |
Minimal Value = 0 Total Pairs = 4
Time Complexity: O(n2) where n is the number of elements in the array.
Auxiliary Space : O(1)
An efficient solution is to use a self balancing binary search tree (which is implemented in set in C++ and TreeSet in Java). We can find closest element in O(log n) time in map.
C++
// C++ program to find number of pairs // and minimal possible value #include <bits/stdc++.h> using namespace std; // function for finding pairs and min value void pairs( int arr[], int n, int k) { // initialize smallest and count int smallest = INT_MAX, count = 0; set< int > s; // iterate over all pairs s.insert(arr[0]); for ( int i = 1; i < n; i++) { // Find the closest elements to k - arr[i] int lower = *lower_bound(s.begin(), s.end(), k - arr[i]); int upper = *upper_bound(s.begin(), s.end(), k - arr[i]); // Find absolute value of the pairs formed // with closest greater and smaller elements. int curr_min = min( abs (lower + arr[i] - k), abs (upper + arr[i] - k)); // is abs value is smaller than smallest // update smallest and reset count to 1 if (curr_min < smallest) { smallest = curr_min; count = 1; } // if abs value is equal to smallest // increment count value else if (curr_min == smallest) count++; s.insert(arr[i]); } // print result cout << "Minimal Value = " << smallest << "\n" ; cout << "Total Pairs = " << count << "\n" ; } // driver program int main() { int arr[] = { 3, 5, 7, 5, 1, 9, 9 }; int k = 12; int n = sizeof (arr) / sizeof (arr[0]); pairs(arr, n, k); return 0; } |
Python3
# Python program to find number of pairs # and minimal possible value from sys import maxsize from bisect import bisect_left, bisect_right # function for finding pairs and min value def pairs(arr, n, k): # initialize smallest and count smallest = maxsize count = 0 s = set () # iterate over all pairs s.add(arr[ 0 ]) for i in range ( 1 , n): # Find the closest elements to k - arr[i] sorted_s = sorted (s) index = bisect_left(sorted_s, k - arr[i]) if index = = len (sorted_s): lower = sorted_s[index - 1 ] else : lower = sorted_s[index] index = bisect_right(sorted_s, k - arr[i]) if index = = len (sorted_s): upper = sorted_s[index - 1 ] else : upper = sorted_s[index] # Find absolute value of the pairs formed # with closest greater and smaller elements. curr_min = min ( abs (lower + arr[i] - k), abs (upper + arr[i] - k)) # is abs value is smaller than smallest # update smallest and reset count to 1 if curr_min < smallest: smallest = curr_min count = 1 # if abs value is equal to smallest # increment count value elif curr_min = = smallest: count + = 1 s.add(arr[i]) # print result print ( "Minimal Value = " , smallest) print ( "Total Pairs = " , count) # driver program arr = [ 3 , 5 , 7 , 5 , 1 , 9 , 9 ] k = 12 n = len (arr) pairs(arr, n, k) # This code is contributed by vikramshirsath177. |
Java
import java.util.*; class Main { // function for finding pairs and min value static void pairs( final int [] arr, final int n, final int k) { // initialize smallest and count int smallest = Integer.MAX_VALUE, count = 0 ; Set<Integer> s = new TreeSet<>(); // iterate over all pairs s.add(arr[ 0 ]); for ( int i = 1 ; i < n; i++) { // Find the closest elements to k - arr[i] int lower = Integer.MIN_VALUE; int upper = Integer.MAX_VALUE; for (Integer x : s) { if (x <= (k - arr[i]) && x >= lower) { lower = x; } if (x >= (k - arr[i]) && x <= upper) { upper = x; } } // Find absolute value of the pairs formed // with closest greater and smaller elements. int curr_min = Math.min(Math.abs(lower + arr[i] - k), Math.abs(upper + arr[i] - k)); // is abs value is smaller than smallest // update smallest and reset count to 1 if (curr_min < smallest) { smallest = curr_min; count = 1 ; } // if abs value is equal to smallest // increment count value else if (curr_min == smallest) count++; s.add(arr[i]); } // print result System.out.println( "Minimal Value = " + smallest); System.out.println( "Total Pairs = " + count); } // driver program public static void main(String[] args) { int [] arr = { 3 , 5 , 7 , 5 , 1 , 9 , 9 }; int k = 12 ; int n = arr.length; pairs(arr, n, k); } } |
Javascript
function pairs(arr, n, k) { // initialize smallest and count let smallest = Number.MAX_SAFE_INTEGER; let count = 0; let s = new Set(); // iterate over all pairs s.add(arr[0]); for (let i = 1; i < n; i++) { // Find the closest elements to k - arr[i] let lower = [...s].find((element) => element >= k - arr[i]); let upper = [...s].find((element) => element >= k - arr[i]); // Find absolute value of the pairs formed // with closest greater and smaller elements. let curr_min = Math.min(Math.abs(lower + arr[i] - k), Math.abs(upper + arr[i] - k)); // if abs value is smaller than smallest // update smallest and reset count to 1 if (curr_min < smallest) { smallest = curr_min; count = 1; } // if abs value is equal to smallest // increment count value else if (curr_min === smallest) count++; s.add(arr[i]); } // print result console.log(`Minimal Value = ${smallest}`); console.log(`Total Pairs = ${count}`); } // driver program let arr = [3, 5, 7, 5, 1, 9, 9]; let k = 12; let n = arr.length; pairs(arr, n, k); |
C#
using System; using System.Collections.Generic; using System.Linq; class Program { // function for finding pairs and min value static void pairs( int [] arr, int n, int k) { // initialize smallest and count int smallest = int .MaxValue, count = 0; SortedSet< int > s = new SortedSet< int >(); // iterate over all pairs s.Add(arr[0]); for ( int i = 1; i < n; i++) { // Find the closest elements to k - arr[i] int lower = s.Where(e => e >= k - arr[i]).DefaultIfEmpty( int .MinValue).First(); int upper = s.Where(e => e > k - arr[i]).DefaultIfEmpty( int .MaxValue).First(); // Find absolute value of the pairs formed // with closest greater and smaller elements. int curr_min = Math.Min(Math.Abs(lower + arr[i] - k), Math.Abs(upper + arr[i] - k)); // if abs value is smaller than smallest // update smallest and reset count to 1 if (curr_min < smallest) { smallest = curr_min; count = 1; } // if abs value is equal to smallest // increment count value else if (curr_min == smallest) { count++; } s.Add(arr[i]); } // print result Console.WriteLine( "Minimal Value = " + smallest); Console.WriteLine( "Total Pairs = " + count); } // driver program static void Main( string [] args) { int [] arr = { 3, 5, 7, 5, 1, 9, 9 }; int k = 12; int n = arr.Length; pairs(arr, n, k); } } |
Minimal Value = 0 Total Pairs = 4
Time Complexity : O(n Log n)
Auxiliary Space: O(n)
This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...