GFG App
Open App
Browser
Continue

# Minimum operation to make all elements equal in array

Given an array with n positive integers. We need to find the minimum number of operations to make all elements equal. We can perform addition, multiplication, subtraction, or division with any part on an array element.

Examples:

Input : arr[] = {1, 2, 3, 4}
Output : 3
Since all elements are different,
we need to perform at least three
operations to make them same. For
example, we can make them all 1
by doing three subtractions. Or make
them all 3 by doing three additions.

Input : arr[] = {1, 1, 1, 1}
Output : 0

To make all elements equal you can select a target value and then you can make all elements equal to that. Now, for converting a single element to target value you can perform a single operation only once. In this manner, you can achieve your task in a maximum of n operations but you have to minimize this number of operations and for this, your selection of target is very important because if you select a target whose frequency in array is x then you have to perform only n-x more operations as you have already x elements equal to your target value. So finally, our task is reduced to finding the element with maximum frequency. This can be achieved by different means such as the iterative method in O(n^2), sorting in O(nlogn), and hashing in O(n) time complexity.

Step-by-step approach:

• Create an empty hash table to store the frequency of each element in the array.
• Traverse the array and insert each element into the hash table. If an element is already present in the hash table, increment its frequency.
• Find the maximum frequency of any element in the hash table.
• The minimum number of operations required to make all elements equal is equal to the difference between the total number of elements in the array and the maximum frequency of any element in the hash table

Pseudocode:

minOperations(arr, n)
// Step 1
hashTable = {}
// Step 2
for i = 0 to n-1 do
if arr[i] is in hashTable then
hashTable[arr[i]] = hashTable[arr[i]] + 1
else
hashTable[arr[i]] = 1
end if
end for
// Step 3
maxCount = 0
for key in hashTable do
if hashTable[key] > maxCount then
maxCount = hashTable[key]
end if
end for
// Step 4
return n - maxCount
end function

Implementation:

## C++

 // CPP program to find the minimum number of // operations required to make all elements // of array equal #include #include #include   using namespace std;   int minOperation(int arr[], int n) {     // Insert all elements in hash.     unordered_map hash;     for (int i=0; i

## Java

 // JAVA Code For Minimum operation to make // all elements equal in array import java.util.*;   class GFG {           // function for min operation     public static int minOperation (int arr[], int n)     {         // Insert all elements in hash.        HashMap hash = new HashMap();                   for (int i=0; i s = hash.keySet();                   for (int i : s)             if (max_count < hash.get(i))                 max_count = hash.get(i);                // return result         return (n - max_count);     }           /* Driver program to test above function */     public static void main(String[] args)     {         int arr[] = {1, 5, 2, 1, 3, 2, 1};         int n = arr.length;         System.out.print(minOperation(arr, n));                   } }     // This code is contributed by Arnav Kr. Mandal.

## Python3

 # Python3 program to find the minimum # number of operations required to # make all elements of array equal #from collections import defaultdict   # Function for min operation # using hashing def minOperation(arr, n):     mp = {}     max_freq = 0     #update the map     for i in arr:         mp[i] = mp.get(i,0) + 1     #finding max freq     for i in mp:         if mp[i] > max_freq:             max_freq = mp[i]     # if all elements have same freq we have to change n-1 elements     if max_freq == 1:         return n-1     # we need to change only remaining elements     return (n-max_freq)                         # Driver Code if __name__ == "__main__":       arr = [1, 5, 2, 1, 3, 2, 1]     n = len(arr)     print(minOperation(arr, n))       # This code is contributed # by Aditya Bharat

## C#

 // C# Code For Minimum operation to make // all elements equal in array using System; using System.Collections.Generic;       class GFG {           // function for min operation     public static int minOperation (int []arr, int n)     {         // Insert all elements in hash.         Dictionary m = new Dictionary();         for (int i = 0 ; i < n; i++)         {             if(m.ContainsKey(arr[i]))             {                 var val = m[arr[i]];                 m.Remove(arr[i]);                 m.Add(arr[i], val + 1);             }             else             {                 m.Add(arr[i], 1);             }         }                   // find the max frequency         int max_count = 0;         HashSet s = new HashSet(m.Keys);                   foreach (int i in s)             if (max_count < m[i])                 max_count = m[i];               // return result         return (n - max_count);     }           /* Driver code */     public static void Main(String[] args)     {         int []arr = {1, 5, 2, 1, 3, 2, 1};         int n = arr.Length;         Console.Write(minOperation(arr, n));                   } }   // This code is contributed by 29AjayKumar

## Javascript



Output

4

Time Complexity: O(n)
Auxiliary Space: O(n)

This article is contributed by Ritik Malarya If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up