Minimum lines to cover all points
Given N points in 2-dimensional space, we need to print the count of the minimum number of lines which traverse through all these N points and which go through a specific (xO, yO) point also.
Examples:
If given points are (-1, 3), (4, 3), (2, 1), (-1, -2), (3, -3) and (xO, yO) point is (1, 0) i.e. every line must go through this point. Then we have to draw at least two lines to cover all these points going through (xO, yO) as shown in below diagram.
We can solve this problem by considering the slope of all points with (xO, yO). If two distinct points have the same slope with (xO, yO) then they can be covered with same line only so we can track slope of each point and whenever we get a new slope we will increase our line count by one.
In below code slope is stored as a pair of integer to get rid of the precision problem and a set is used to keep track of occurred slopes.
Please see below code for better understanding.
CPP
// C++ program to get minimum lines to cover // all the points #include <bits/stdc++.h> using namespace std; // Utility method to get gcd of a and b int gcd( int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // method returns reduced form of dy/dx as a pair pair< int , int > getReducedForm( int dy, int dx) { int g = gcd( abs (dy), abs (dx)); // get sign of result bool sign = (dy < 0) ^ (dx < 0); if (sign) return make_pair(- abs (dy) / g, abs (dx) / g); else return make_pair( abs (dy) / g, abs (dx) / g); } /* method returns minimum number of lines to cover all points where all lines goes through (xO, yO) */ int minLinesToCoverPoints( int points[][2], int N, int xO, int yO) { // set to store slope as a pair set< pair< int , int > > st; pair< int , int > temp; int minLines = 0; // loop over all points once for ( int i = 0; i < N; i++) { // get x and y co-ordinate of current point int curX = points[i][0]; int curY = points[i][1]; temp = getReducedForm(curY - yO, curX - xO); // if this slope is not there in set, // increase ans by 1 and insert in set if (st.find(temp) == st.end()) { st.insert(temp); minLines++; } } return minLines; } // Driver code to test above methods int main() { int xO, yO; xO = 1; yO = 0; int points[][2] = { {-1, 3}, {4, 3}, {2, 1}, {-1, -2}, {3, -3} }; int N = sizeof (points) / sizeof (points[0]); cout << minLinesToCoverPoints(points, N, xO, yO); return 0; } |
Java
// Java Program for above approach import java.io.*; import java.util.*; import java.util.Set; // User defined Pair class class Pair { int x; int y; // Constructor public Pair( int x, int y) { this .x = x; this .y = y; } } class GFG { // Utility method to get gcd of a and b public static int gcd( int a, int b) { if (b == 0 ) return a; return gcd(b, a % b); } // method returns reduced form of dy/dx as a pair public static Pair getReducedForm( int dy, int dx) { int g = gcd(Math.abs(dy), Math.abs(dx)); // get sign of result boolean sign = (dy < 0 ) ^ (dx < 0 ); Pair res = new Pair( 0 , 0 ); if (sign) { res.x = -Math.abs(dy) / g; res.y = Math.abs(dx) / g; } else { res.x = Math.abs(dy) / g; res.y = Math.abs(dx) / g; } return res; } /* method returns minimum number of lines to cover all points where all lines goes through (xO, yO) */ public static int minLinesToCoverPoints( int points[][], int N, int xO, int yO) { // set to store slope as a string Set<String> st = new HashSet<String>(); Pair temp; int minLines = 0 ; // loop over all points once for ( int i = 0 ; i < N; i++) { // get x and y co-ordinate of current point int curX = points[i][ 0 ]; int curY = points[i][ 1 ]; temp = getReducedForm(curY - yO, curX - xO); // convert pair into string to store in set String tempString = temp.x + "," + temp.y; // if this slope is not there in set, // increase ans by 1 and insert in set if (st.contains(tempString) == false ) { st.add(tempString); minLines += 1 ; } } return minLines; } // Driver code public static void main(String[] args) { int xO, yO; xO = 1 ; yO = 0 ; int points[][] = { { - 1 , 3 }, { 4 , 3 }, { 2 , 1 }, { - 1 , - 2 }, { 3 , - 3 } }; int N = points.length; System.out.println( minLinesToCoverPoints(points, N, xO, yO)); } } // This code is contributed by rj13to. |
Python3
# Python3 program to get minimum lines to cover # all the points # Utility method to get gcd of a and b def gcd(a, b): if (b = = 0 ): return a return gcd(b, a % b) # method returns reduced form of dy/dx as a pair def getReducedForm(dy, dx): g = gcd( abs (dy), abs (dx)) # get sign of result sign = (dy < 0 ) ^ (dx < 0 ) if (sign): return ( - abs (dy) / / g, abs (dx) / / g) else : return ( abs (dy) / / g, abs (dx) / / g) # /* method returns minimum number of lines to # cover all points where all lines goes # through (xO, yO) */ def minLinesToCoverPoints(points, N, xO, yO): # set to store slope as a pair st = dict () minLines = 0 # loop over all points once for i in range (N): # get x and y co-ordinate of current point curX = points[i][ 0 ] curY = points[i][ 1 ] temp = getReducedForm(curY - yO, curX - xO) # if this slope is not there in set, # increase ans by 1 and insert in set if (temp not in st): st[temp] = 1 minLines + = 1 return minLines # Driver code xO = 1 yO = 0 points = [[ - 1 , 3 ], [ 4 , 3 ], [ 2 , 1 ], [ - 1 , - 2 ], [ 3 , - 3 ]] N = len (points) print (minLinesToCoverPoints(points, N, xO, yO)) # This code is contributed by mohit kumar 29 |
C#
// C# program to print the count of the minimum number // of lines which traverse through all these N points // and which go through a specific (xO, yO) point also using System; using System.Collections.Generic; using System.Linq; // User defined Pair class public class Pair { public int x; public int y; // Constructor public Pair( int x, int y) { this .x = x; this .y = y; } } public class GFG{ // Utility method to get gcd of a and b public static int gcd( int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // method returns reduced form of dy/dx as a pair public static Pair getReducedForm( int dy, int dx) { int g = gcd(Math.Abs(dy), Math.Abs(dx)); // get sign of result bool sign = (dy < 0) ^ (dx < 0); Pair res = new Pair(0, 0); if (sign) { res.x = -Math.Abs(dy) / g; res.y = Math.Abs(dx) / g; } else { res.x = Math.Abs(dy) / g; res.y = Math.Abs(dx) / g; } return res; } /* method returns minimum number of lines to cover all points where all lines goes through (xO, yO) */ static public int minLinesToCoverPoints( int [,] points, int N, int xO, int yO){ // set to store slope as a string HashSet< string > st = new HashSet< string >(); Pair temp; int minLines = 0; // loop over all points once for ( int i = 0; i < N; i++) { // get x and y co-ordinate of current point int curX = points[i,0]; int curY = points[i,1]; temp = getReducedForm(curY - yO, curX - xO); // convert pair into string to store in set String tempString = temp.x + "," + temp.y; // if this slope is not there in set, // increase ans by 1 and insert in set if (st.Contains(tempString) == false ) { st.Add(tempString); minLines += 1; } } return minLines; } //Driver Code static public void Main (){ int xO, yO; xO = 1; yO = 0; int [,] points = new int [,] { { -1, 3 }, { 4, 3 }, { 2, 1 }, { -1, -2 }, { 3, -3 } }; int N = points.GetLength(0); Console.Write(minLinesToCoverPoints(points, N, xO, yO)); } } // This code is contributed by shruti456rawal |
Javascript
<script> // Javascript program to get minimum lines to cover // all the points // Utility method to get gcd of a and b function gcd(a,b) { if (b == 0) return a; return gcd(b, a % b); } // method returns reduced form of dy/dx as a pair function getReducedForm(dy,dx) { let g = gcd(Math.abs(dy), Math.abs(dx)); // get sign of result let sign = (dy < 0) ^ (dx < 0); if (sign) { return [(Math.floor(-Math.abs(dy) / g), Math.floor(Math.abs(dx) / g))]; } else return [(Math.floor(Math.abs(dy) / g), Math.floor(Math.abs(dx) / g))]; } /* method returns minimum number of lines to cover all points where all lines goes through (xO, yO) */ function minLinesToCoverPoints(points,N,x0,y0) { let st= new Set(); let temp; let minLines = 0; // loop over all points once for (let i = 0; i < N; i++) { // get x and y co-ordinate of current point let curX = points[i][0]; let curY = points[i][1]; temp = getReducedForm(curY - yO, curX - xO); // if this slope is not there in set, // increase ans by 1 and insert in set if (!st.has(temp.join( "" ))) { st.add(temp.join( "" )); minLines++; } } return minLines; } // Driver code to test above methods let xO, yO; xO = 1; yO = 0; let points =[[-1, 3], [4, 3], [2, 1], [-1, -2], [3, -3]]; let N = points.length; document.write(minLinesToCoverPoints(points, N, xO, yO)) // This code is contributed by unknown2108 </script> |
Output:
2
Time Complexity: O(N)
Auxiliary Space: O(N)
This article is contributed by Aarti_Rathi and Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...