Minimum LCM of all subarrays of length at least 2
Given an array arr[] of N positive integers. The task is to find the minimum LCM of all subarrays of size greater than 1.
Examples:
Input: arr[] = { 3, 18, 9, 18, 5, 15, 8, 7, 6, 9 }
Output: 15
Explanation:
LCM of subarray {5, 15} is minimum which is 15.Input: arr[] = { 4, 8, 12, 16, 20, 24 }
Output: 8
Explanation:
LCM of subarray {4, 8} is minimum which is 8.
Naive Approach: The idea is to generate all possible subarrays of length at least 2 and find the LCM of all the subarrays formed. Print the minimum LCM among all the subarrays.
Time Complexity: O(N3)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach we have to observe that the LCM of two or more numbers will be less if and only if the number of elements whose LCM has to be calculated is minimum. The minimum possible value for subarray size is 2. Therefore the idea is to find the LCM of all the adjacent pairs and print the minimum of them.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find LCM pf two numbers int LCM( int a, int b) { // Initialise lcm value int lcm = a > b ? a : b; while ( true ) { // Check for divisibility // of a and b by the lcm if (lcm % a == 0 && lcm % b == 0) break ; else lcm++; } return lcm; } // Function to find the Minimum LCM of // all subarrays of length greater than 1 void findMinLCM( int arr[], int n) { // Store the minimum LCM int minLCM = INT_MAX; // Traverse the array for ( int i = 0; i < n - 1; i++) { // Find LCM of consecutive element int val = LCM(arr[i], arr[i + 1]); // Check if the calculated LCM is // less than the minLCM then update it if (val < minLCM) { minLCM = val; } } // Print the minimum LCM cout << minLCM << endl; } // Driver Code int main() { // Given array arr[] int arr[] = { 4, 8, 12, 16, 20, 24 }; // Size of the array int n = sizeof (arr) / sizeof (arr[0]); // Function Call findMinLCM(arr, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find LCM pf two numbers static int LCM( int a, int b) { // Initialise lcm value int lcm = a > b ? a : b; while ( true ) { // Check for divisibility // of a and b by the lcm if (lcm % a == 0 && lcm % b == 0 ) break ; else lcm++; } return lcm; } // Function to find the Minimum LCM of // all subarrays of length greater than 1 static void findMinLCM( int arr[], int n) { // Store the minimum LCM int minLCM = Integer.MAX_VALUE; // Traverse the array for ( int i = 0 ; i < n - 1 ; i++) { // Find LCM of consecutive element int val = LCM(arr[i], arr[i + 1 ]); // Check if the calculated LCM is // less than the minLCM then update it if (val < minLCM) { minLCM = val; } } // Print the minimum LCM System.out.print(minLCM + "\n" ); } // Driver Code public static void main(String[] args) { // Given array arr[] int arr[] = { 4 , 8 , 12 , 16 , 20 , 24 }; // Size of the array int n = arr.length; // Function call findMinLCM(arr, n); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program for the above approach import sys # Function to find LCM pf two numbers def LCM(a, b): # Initialise lcm value lcm = a if a > b else b while ( True ): # Check for divisibility # of a and b by the lcm if (lcm % a = = 0 and lcm % b = = 0 ): break else : lcm + = 1 return lcm # Function to find the Minimum LCM of # all subarrays of length greater than 1 def findMinLCM(arr, n): # Store the minimum LCM minLCM = sys.maxsize # Traverse the array for i in range (n - 1 ): # Find LCM of consecutive element val = LCM(arr[i], arr[i + 1 ]) # Check if the calculated LCM is # less than the minLCM then update it if (val < minLCM): minLCM = val # Print the minimum LCM print (minLCM) # Driver Code # Given array arr[] arr = [ 4 , 8 , 12 , 16 , 20 , 24 ] # Size of the array n = len (arr) # Function call findMinLCM(arr, n) # This code is contributed by sanjoy_62 |
C#
// C# program for the above approach using System; class GFG{ // Function to find LCM pf two numbers static int LCM( int a, int b) { // Initialise lcm value int lcm = a > b ? a : b; while ( true ) { // Check for divisibility // of a and b by the lcm if (lcm % a == 0 && lcm % b == 0) break ; else lcm++; } return lcm; } // Function to find the Minimum LCM of // all subarrays of length greater than 1 static void findMinLCM( int []arr, int n) { // Store the minimum LCM int minLCM = int .MaxValue; // Traverse the array for ( int i = 0; i < n - 1; i++) { // Find LCM of consecutive element int val = LCM(arr[i], arr[i + 1]); // Check if the calculated LCM is // less than the minLCM then update it if (val < minLCM) { minLCM = val; } } // Print the minimum LCM Console.Write(minLCM + "\n" ); } // Driver Code public static void Main(String[] args) { // Given array []arr int []arr = { 4, 8, 12, 16, 20, 24 }; // Size of the array int n = arr.Length; // Function call findMinLCM(arr, n); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program for the above approach // Function to find LCM of two numbers function LCM(a, b) { // Initialise lcm value let lcm = a > b ? a : b; while ( true ) { // Check for divisibility // of a and b by the lcm if (lcm % a == 0 && lcm % b == 0) break ; else lcm++; } return lcm; } // Function to find the Minimum LCM of // all subarrays of length greater than 1 function findMinLCM(arr, n) { // Store the minimum LCM let minLCM = Number.MAX_VALUE; // Traverse the array for (let i = 0; i < n - 1; i++) { // Find LCM of consecutive element let val = LCM(arr[i], arr[i + 1]); // Check if the calculated LCM is // less than the minLCM then update it if (val < minLCM) { minLCM = val; } } // Print the minimum LCM document.write(minLCM + "<br>" ); } // Driver Code // Given array arr[] let arr = [ 4, 8, 12, 16, 20, 24 ]; // Size of the array let n = arr.length; // Function Call findMinLCM(arr, n); // This code is contributed by Mayank Tyagi </script> |
8
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...