Minimum inversions required so that no two adjacent elements are same
Given a binary array arr[] of size N. The task is to find the minimum number of inversions required so that no two adjacent elements are same. After a single inversion, an element could change from 0 to 1 or from 1 to 0.
Examples:
Input: arr[] = {1, 1, 1}
Output: 1
Change arr[1] from 1 to 0 and
the array becomes {1, 0, 1}.
Input: arr[] = {1, 0, 0, 1, 0, 0, 1, 0}
Output: 3
Approach: There are only two possibilities to make the array {1, 0, 1, 0, 1, 0, 1, …} or {0, 1, 0, 1, 0, 1, 0, …}. Let ans_a and ans_b be the count of changes required to get these arrays respectively. Now, the final answer will be min(ans_a, ans_b).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the minimum // inversions required so that no // two adjacent elements are same int min_changes( int a[], int n) { // To store the inversions required // to make the array {1, 0, 1, 0, 1, 0, 1, ...} // and {0, 1, 0, 1, 0, 1, 0, ...} respectively int ans_a = 0, ans_b = 0; // Find all the changes required for ( int i = 0; i < n; i++) { if (i % 2 == 0) { if (a[i] == 0) ans_a++; else ans_b++; } else { if (a[i] == 0) ans_b++; else ans_a++; } } // Return the required answer return min(ans_a, ans_b); } // Driver code int main() { int a[] = { 1, 0, 0, 1, 0, 0, 1, 0 }; int n = sizeof (a) / sizeof (a[0]); cout << min_changes(a, n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the minimum // inversions required so that no // two adjacent elements are same static int min_changes( int a[], int n) { // To store the inversions required // to make the array {1, 0, 1, 0, 1, 0, 1, ...} // and {0, 1, 0, 1, 0, 1, 0, ...} respectively int ans_a = 0 , ans_b = 0 ; // Find all the changes required for ( int i = 0 ; i < n; i++) { if (i % 2 == 0 ) { if (a[i] == 0 ) ans_a++; else ans_b++; } else { if (a[i] == 0 ) ans_b++; else ans_a++; } } // Return the required answer return Math.min(ans_a, ans_b); } // Driver code public static void main(String[] args) { int a[] = { 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 }; int n = a.length; System.out.println(min_changes(a, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # Function to return the minimum # inversions required so that no # two adjacent elements are same def min_changes(a, n): # To store the inversions required # to make the array {1, 0, 1, 0, 1, 0, 1, ...} # and {0, 1, 0, 1, 0, 1, 0, ...} respectively ans_a = 0 ; ans_b = 0 ; # Find all the changes required for i in range (n): if (i % 2 = = 0 ): if (a[i] = = 0 ): ans_a + = 1 ; else : ans_b + = 1 ; else : if (a[i] = = 0 ): ans_b + = 1 ; else : ans_a + = 1 ; # Return the required answer return min (ans_a, ans_b); # Driver code if __name__ = = '__main__' : a = [ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 ]; n = len (a); print (min_changes(a, n)); # This code is contributed by Rajput-Ji |
C#
// C# implementation of the approach using System; class GFG { // Function to return the minimum // inversions required so that no // two adjacent elements are same static int min_changes( int []a, int n) { // To store the inversions required // to make the array {1, 0, 1, 0, 1, 0, 1, ...} // and {0, 1, 0, 1, 0, 1, 0, ...} respectively int ans_a = 0, ans_b = 0; // Find all the changes required for ( int i = 0; i < n; i++) { if (i % 2 == 0) { if (a[i] == 0) ans_a++; else ans_b++; } else { if (a[i] == 0) ans_b++; else ans_a++; } } // Return the required answer return Math.Min(ans_a, ans_b); } // Driver code public static void Main(String[] args) { int []a = { 1, 0, 0, 1, 0, 0, 1, 0 }; int n = a.Length; Console.WriteLine(min_changes(a, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation of the approach // Function to return the minimum // inversions required so that no // two adjacent elements are same function min_changes(a, n) { // To store the inversions required // to make the array {1, 0, 1, 0, 1, 0, 1, ...} // and {0, 1, 0, 1, 0, 1, 0, ...} respectively let ans_a = 0, ans_b = 0; // Find all the changes required for (let i = 0; i < n; i++) { if (i % 2 == 0) { if (a[i] == 0) ans_a++; else ans_b++; } else { if (a[i] == 0) ans_b++; else ans_a++; } } // Return the required answer return Math.min(ans_a, ans_b); } // Driver code let a = [1, 0, 0, 1, 0, 0, 1, 0]; let n = a.length; document.write(min_changes(a, n)); </script> |
Output:
3
Time Complexity: O(n)
Auxiliary Space: O(1)
Please Login to comment...