Minimum edges to reverse to make path from a source to a destination
Given a directed graph and a source node and destination node, we need to find how many edges we need to reverse in order to make at least 1 path from the source node to the destination node.
Examples:
In above graph there were two paths from node 0 to node 6, 0 -> 1 -> 2 -> 3 -> 6 0 -> 1 -> 5 -> 4 -> 6 But for first path only two edges need to be reversed, so answer will be 2 only.
This problem can be solved assuming a different version of the given graph. In this version we make a reverse edge corresponding to every edge and we assign that a weight 1 and assign a weight 0 to original edge. After this modification above graph looks something like below,
Now we can see that we have modified the graph in such a way that, if we move towards original edge, no cost is incurred, but if we move toward reverse edge 1 cost is added. So if we apply Dijkstra’s shortest path on this modified graph from given source, then that will give us minimum cost to reach from source to destination i.e. minimum edge reversal from source to destination.
Below is the code based on above concept.
C++
// C++ Program to find minimum edge reversal to get // atleast one path from source to destination #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f3f // This class represents a directed graph using // adjacency list representation class Graph { int V; list<pair< int , int >> *graph; public : // Constructor: Graph( int V) { this ->V = V; graph = new list<pair< int , int >>[V]; } // Adding edges into the graph: void addEdge( int u, int v, int w) { graph[u].push_back(make_pair(v, w)); } // Returns shortest path from source to all other vertices. vector< int > shortestPath( int source) { // Create a set to store vertices that are being preprocessed set<pair< int , int >> setds; // Create a vector for distances and initialize all // distances as infinite (INF) vector< int > distance(V, INF); // Insert source itself in Set and initialize its distance as 0. setds.insert(make_pair(0, source)); distance = 0; /* Looping till all shortest distance are finalized then setds will become empty */ while (!setds.empty()) { // The first vertex in Set is the minimum distance // vertex, extract it from set. pair< int , int > tmp = *(setds.begin()); setds.erase(setds.begin()); // vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted distance (distance must be first item // in pair) int u = tmp.second; list<pair< int , int >>::iterator i; for (i = graph[u].begin(); i != graph[u].end(); ++i) { // Get vertex label and weight of current adjacent // of u. int v = (*i).first; int weight = (*i).second; // If there is shorter path to v through u. if (distance[v] > distance[u] + weight) { /* If distance of v is not INF then it must be in our set, so removing it and inserting again with updated less distance. Note : We extract only those vertices from Set for which distance is finalized. So for them, we would never reach here. */ if (distance[v] != INF) setds.erase(setds.find(make_pair(distance[v], v))); // Updating distance of v distance[v] = distance[u] + weight; setds.insert(make_pair(distance[v], v)); } } } return distance; } Graph modelGraphWithEdgeWeight( int edge[][2], int E, int V) { Graph g(V); for ( int i = 0; i < E; i++) { // original edge : weight 0 g.addEdge(edge[i][0], edge[i][1], 0); // reverse edge : weight 1 g.addEdge(edge[i][1], edge[i][0], 1); } return g; } int getMinEdgeReversal( int edge[][2], int E, int V, int source, int destination) { // get modified graph with edge weight. Graph g = modelGraphWithEdgeWeight(edge, E, V); // distance vector stores shortest path. vector< int > dist = g.shortestPath(source); // If distance of destination is still INF then we cannot reach destination. Hence, not possible. if (dist[destination] == INF) return -1; else return dist[destination]; } }; int main() { int V = 7; Graph g(V); int edge[][2] = {{0, 1}, {2, 1}, {2, 3}, {5, 1}, {4, 5}, {6, 4}, {6, 3}}; int E = sizeof (edge) / sizeof (edge[0]); int minEdgeToReverse = g.getMinEdgeReversal(edge, E, V, 0, 6); if (minEdgeToReverse != -1) cout << minEdgeToReverse << endl; else cout << "Not Possible." << endl; return 0; } |
Java
// Java program to find minimum edge reversal to get // atleast one path from source to destination import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.Set; class Pair { int first, second; public Pair( int first, int second) { this .first = first; this .second = second; } } // This class represents a directed graph using // adjacency list representation class Graph{ final int INF = ( int ) 0x3f3f3f3f ; // No. of vertices int V; // In a weighted graph, we need to store vertex // and weight pair for every edge List<Pair>[] adj; // Allocates memory for adjacency list @SuppressWarnings ( "unchecked" ) public Graph( int V) { this .V = V; adj = new ArrayList[V]; for ( int i = 0 ; i < V; i++) { adj[i] = new ArrayList(); } } // Function adds a directed edge from // u to v with weight w void addEdge( int u, int v, int w) { adj[u].add( new Pair(v, w)); } // Prints shortest paths from // src to all other vertices int [] shortestPath( int src) { // Create a set to store vertices // that are being preprocessed Set<Pair> setds = new HashSet<Pair>(); // Create a vector for distances and // initialize all distances as infinite(INF) int [] dist = new int [V]; Arrays.fill(dist, INF); // Insert source itself in Set and initialize // its distance as 0. setds.add( new Pair( 0 , src)); dist[src] = 0 ; // Looping till all shortest distance are // finalized then setds will become empty while (!setds.isEmpty()) { // The first vertex in Set is the minimum // distance vertex, extract it from set. Iterator<Pair> itr = setds.iterator(); Pair tmp = itr.next(); itr.remove(); // Vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted distance (distance must be first item // in pair) int u = tmp.second; // 'i' is used to get all adjacent // vertices of a vertex for (Pair p : adj[u]) { // Get vertex label and weight of // current adjacent of u. int v = p.first; int weight = p.second; // If there is shorter path to v through u. if (dist[v] > dist[u] + weight) { // If distance of v is not INF then it // must be in our set, so removing it // and inserting again with updated // less distance. Note : We extract // only those vertices from Set for // which distance is finalized. So // for them, we would never reach here. if (dist[v] != INF) { setds.remove( new Pair(dist[v], v)); } // setds.erase(setds.find(new Pair(dist[v], v))); // Updating distance of v dist[v] = dist[u] + weight; setds.add( new Pair(dist[v], v)); } } } return dist; } } class GFG{ static final int INF = ( int ) 0x3f3f3f3f ; // Function adds reverse edge of each original // edge in the graph. It gives reverse edge // a weight = 1 and all original edges a // weight of 0. Now, the length of the // shortest path will give us the answer. // If shortest path is p: it means we // used p reverse edges in the shortest path. static Graph modelGraphWithEdgeWeight( int edge[][], int E, int V) { Graph g = new Graph(V); for ( int i = 0 ; i < E; i++) { // Original edge : weight 0 g.addEdge(edge[i][ 0 ], edge[i][ 1 ], 0 ); // Reverse edge : weight 1 g.addEdge(edge[i][ 1 ], edge[i][ 0 ], 1 ); } return g; } // Function returns minimum number of edges to be // reversed to reach from src to dest static int getMinEdgeReversal( int edge[][], int E, int V, int src, int dest) { // Get modified graph with edge weight Graph g = modelGraphWithEdgeWeight(edge, E, V); // Get shortes path vector int [] dist = g.shortestPath(src); // If distance of destination is still INF, // not possible if (dist[dest] == INF) return - 1 ; else return dist[dest]; } // Driver code public static void main(String[] args) { int V = 7 ; int edge[][] = { { 0 , 1 }, { 2 , 1 }, { 2 , 3 }, { 5 , 1 }, { 4 , 5 }, { 6 , 4 }, { 6 , 3 } }; int E = edge.length; int minEdgeToReverse = getMinEdgeReversal( edge, E, V, 0 , 6 ); if (minEdgeToReverse != - 1 ) System.out.println(minEdgeToReverse); else System.out.println( "Not possible" ); } } // This code is contributed by sanjeev2552 |
Python3
# Python3 Program to find minimum edge reversal to get # atleast one path from source to destination # method adds a directed edge from u to v with weight w def addEdge(u, v, w): global adj adj[u].append((v, w)) # Prints shortest paths from src to all other vertices def shortestPath(src): # Create a set to store vertices that are being # preprocessed setds = {} # Create a vector for distances and initialize all # distances as infinite (INF) dist = [ 10 * * 18 for i in range (V)] # Insert source itself in Set and initialize its global adj setds[( 0 , src)] = 1 dist[src] = 0 # /* Looping till all shortest distance are finalized # then setds will become empty */ while ( len (setds) > 0 ): # The first vertex in Set is the minimum distance # vertex, extract it from set. tmp = list (setds.keys())[ 0 ] del setds[tmp] # vertex label is stored in second of pair (it # has to be done this way to keep the vertices # sorted distance (distance must be first item # in pair) u = tmp[ 1 ] # 'i' is used to get all adjacent vertices of a vertex # list< pair<int, int> >::iterator i; for i in adj[u]: # Get vertex label and weight of current adjacent # of u. v = i[ 0 ]; weight = i[ 1 ] # If there is shorter path to v through u. if (dist[v] > dist[u] + weight): # /* If distance of v is not INF then it must be in # our set, so removing it and inserting again # with updated less distance. # Note : We extract only those vertices from Set # for which distance is finalized. So for them, # we would never reach here. */ if (dist[v] ! = 10 * * 18 ): del setds[(dist[v], v)] # Updating distance of v dist[v] = dist[u] + weight setds[(dist[v], v)] = 1 return dist # /* method adds reverse edge of each original edge # in the graph. It gives reverse edge a weight = 1 # and all original edges a weight of 0. Now, the # length of the shortest path will give us the answer. # If shortest path is p: it means we used p reverse # edges in the shortest path. */ def modelGraphWithEdgeWeight(edge, E, V): global adj for i in range (E): # original edge : weight 0 addEdge(edge[i][ 0 ], edge[i][ 1 ], 0 ) # reverse edge : weight 1 addEdge(edge[i][ 1 ], edge[i][ 0 ], 1 ) # Method returns minimum number of edges to be # reversed to reach from src to dest def getMinEdgeReversal(edge, E, V,src, dest): # get modified graph with edge weight modelGraphWithEdgeWeight(edge, E, V) # get shortes path vector dist = shortestPath(src) # If distance of destination is still INF, # not possible if (dist[dest] = = 10 * * 18 ): return - 1 else : return dist[dest] # Driver code if __name__ = = '__main__' : V = 7 edge = [[ 0 , 1 ], [ 2 , 1 ], [ 2 , 3 ], [ 5 , 1 ],[ 4 , 5 ], [ 6 , 4 ], [ 6 , 3 ]] E, adj = len (edge), [[] for i in range (V + 1 )] minEdgeToReverse = getMinEdgeReversal(edge, E, V, 0 , 6 ) if (minEdgeToReverse ! = - 1 ): print (minEdgeToReverse) else : print ( "Not possible" ) # This code is contributed by mohit kumar 29 |
C#
using System; using System.Collections.Generic; // C# program to find minimum edge reversal to get // atleast one path from source to destination namespace ConsoleApp { // This class represents a directed graph using // adjacency list representation class Pair { public int First { get ; set ; } public int Second { get ; set ; } public Pair( int first, int second) { First = first; Second = second; } } class Graph { private const int INF = 0x3f3f3f3f; // No. of vertices public int V { get ; } // In a weighted graph, we need to store vertex // and weight pair for every edge private List<Pair>[] adj; // Allocates memory for adjacency list public Graph( int V) { this .V = V; adj = new List<Pair>[V]; for ( int i = 0; i < V; i++) { adj[i] = new List<Pair>(); } } // Function adds a directed edge from // u to v with weight w public void addEdge( int u, int v, int w) { adj[u].Add( new Pair(v, w)); } // Prints shortest paths from // src to all other vertices public int [] shortestPath( int src) { // Create a set to store vertices // that are being preprocessed var setds = new HashSet<Pair>(); // Create a vector for distances and // initialize all distances as infinite(INF) int [] dist = new int [V]; Array.Fill(dist, INF); // Insert source itself in Set and initialize // its distance as 0. setds.Add( new Pair(0, src)); dist[src] = 0; // Looping till all shortest distance are // finalized then setds will become empty while (setds.Count > 0) { // The first vertex in Set is the minimum // distance vertex, extract it from set. var itr = setds.GetEnumerator(); itr.MoveNext(); // Vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted distance (distance must be first item // in pair) var tmp = itr.Current; setds.Remove(tmp); int u = tmp.Second; // 'i' is used to get all adjacent // vertices of a vertex foreach ( var p in adj[u]) { // Get vertex label and weight of // current adjacent of u. int v = p.First; int weight = p.Second; // If there is shorter path to v through u. if (dist[v] > dist[u] + weight) { // If distance of v is not INF then it // must be in our set, so removing it // and inserting again with updated // less distance. Note : We extract // only those vertices from Set for // which distance is finalized. So // for them, we would never reach here. if (dist[v] != INF) { setds.Remove( new Pair(dist[v], v)); } // setds.erase(setds.find(new Pair(dist[v], v))); // Updating distance of v dist[v] = dist[u] + weight; setds.Add( new Pair(dist[v], v)); } } } return dist; } } class GFG { private const int INF = 0x3f3f3f3f; // Function adds reverse edge of each original // edge in the graph. It gives reverse edge // a weight = 1 and all original edges a // weight of 0. Now, the length of the // shortest path will give us the answer. // If shortest path is p: it means we // used p reverse edges in the shortest path. static Graph modelGraphWithEdgeWeight( int [][] edge, int E, int V) { var g = new Graph(V); for ( int i = 0; i < E; i++) { // Original edge : weight 0 g.addEdge(edge[i][0], edge[i][1], 0); g.addEdge(edge[i][1], edge[i][0], 1); } return g; } // Function returns minimum number of edges to be // reversed to reach from src to dest static int getMinEdgeReversal( int [][] edge, int E, int V, int src, int dest) { var g = modelGraphWithEdgeWeight(edge, E, V); int [] dist = g.shortestPath(src); // If distance of destination is still INF, // not possible if (dist[dest] == INF) return -1; else return dist[dest]; } //Driver code static void Main( string [] args) { int V = 7; int [][] edge = { new [] { 0, 1 }, new [] { 2, 1 }, new [] { 2, 3 }, new [] { 5, 1 }, new [] { 4, 5 }, new [] { 6, 4 }, new [] { 6, 3 } }; int E = edge.Length; int minEdgeToReverse = getMinEdgeReversal( edge, E, V, 0, 6); Console.WriteLine(minEdgeToReverse); } } } |
Javascript
// Javascript Program to find minimum edge reversal to get // atleast one path from source to destination let INF = Number.MAX_VALUE; // This class represents a directed graph using // adjacency list representation class Graph { // Constructor: constructor(V) { this .V = V; this .graph = Array.from(Array(V), () => new Array()); } // Adding edges into the graph: addEdge(u, v, w) { this .graph[u].push([v, w]); } // Returns shortest path from source to all other vertices. shortestPath(source) { // Create a set to store vertices that are being preprocessed let setds = new Set(); // Create a vector for distances and initialize all // distances as (INF) let distance = new Array(V); distance.fill(INF); // Insert source itself in Set and initialize its distance as 0. setds.add([0, source]); distance = 0; /* Looping till all shortest distance are finalized then setds will become empty */ while (setds.size != 0) { // The first vertex in Set is the minimum distance // vertex, extract it from set. let it = setds.values(); //get first entry: let tm = it.next(); let tmp = tm.value; setds. delete (tmp); // vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted distance (distance must be first item // in pair) let u = tmp[1]; for (let j in this .graph[u]) { // Get vertex label and weight of current adjacent // of u. let i = this .graph[u][j]; let v = i[0]; let weight = i[1]; // If there is shorter path to v through u. if (distance[v] > distance[u] + weight) { /* If distance of v is not INF then it must be in our set, so removing it and inserting again with updated less distance. Note : We extract only those vertices from Set for which distance is finalized. So for them, we would never reach here. */ if (distance[v] != INF) setds. delete ([distance[v], v]); // Updating distance of v distance[v] = distance[u] + weight; setds.add([distance[v], v]); } } } return distance; } modelGraphWithEdgeWeight(edge, E, V) { let g = new Graph(V); for (let i = 0; i < E; i++) { // original edge : weight 0 g.addEdge(edge[i][0], edge[i][1], 0); // reverse edge : weight 1 g.addEdge(edge[i][1], edge[i][0], 1); } return g; } getMinEdgeReversal(edge, E, V, source, destination) { // get modified graph with edge weight. let g = this .modelGraphWithEdgeWeight(edge, E, V); // distance vector stores shortest path. let dist = g.shortestPath(source); // If distance of destination is still INF then we cannot reach destination. Hence, not possible. if (dist[destination] == INF) return -1; else return dist[destination]; } } let V = 7; let g = new Graph(V); let edge = [ [0, 1], [2, 1], [2, 3], [5, 1], [4, 5], [6, 4], [6, 3], ]; let E = edge.length; let minEdgeToReverse = g.getMinEdgeReversal(edge, E, V, 0, 6); if (minEdgeToReverse != -1) console.log(minEdgeToReverse); else console.log( "Not Possible." ); |
2
Time complexity:
Therefore, the overall time complexity of the program is O(E*log(V)).
Space complexity:
Therefore, the overall space complexity of the program is O(E + V).
One more efficient approach to this problem would be by using 0-1 BFS concept.
Below is the implementation of that algorithm:
C++
// C++ code to find minimum edge reversal to get // atleast one path from source to destination using 0-1 BFS // Code By: Sparsh_CBS #include <bits/stdc++.h> using namespace std; // Creating a node class Node { private : int val; int weight; int parent; public : Node( int val, int weight) { this ->val = val; this ->weight = weight; parent = -1; } // We have used the concept of parent to avoid // a child revisiting its parent and pushing it in // the deque during the 0-1 BFS Node( int val, int distance, int parent) { this ->val = val; this ->weight = distance; this ->parent = parent; } int getVal() { return val; } int getWeight() { return weight; } int getParent() { return parent; } }; int getMinRevEdges(vector<vector< int > >& adj, int src, int dest) { int n = adj.size(); // Create the given graph into bidirectional graph vector<vector<Node> > newAdj(n); for ( int i = 0; i < n; i++) { for ( int j = 0; j < adj[i].size(); j++) { int neighbour = adj[i][j]; // original edges are to be assigned a weight of // 0 newAdj[i].push_back(Node(neighbour, 0)); // make a fake edge and assign a weight of 1 newAdj[neighbour].push_back(Node(i, 1)); } } // Now, Apply 0-1 BFS using Deque to get the shortest // path // In the implementation, we will only add the // encountered node into the deque if and only if // the distance at which it was earlier explored was // strictly larger than the currently encountered // distance deque<Node> dq; // Here Node is made up of : Node(int node_val, int // node_distance, int node_parent) dq.push_front(Node(src, 0, -1)); vector< int > dist(n, INT_MAX); // Set the distance of all nodes to infinity(INT_MAX) // set distance of source node as 0 dist[src] = 0; while (!dq.empty()) { Node curr = dq.front(); dq.pop_front(); int currVal = curr.getVal(); int currWeight = curr.getWeight(); int currParent = curr.getParent(); // If we encounter the destination node, we return if (currVal == dest) return currWeight; // Iterate over the neighbours of the current Node for ( auto neighbourNode : newAdj[currVal]) { int neighbour = neighbourNode.getVal(); if (neighbour == currParent) continue ; int wt = neighbourNode.getWeight(); if (wt == 0 && dist[neighbour] > currWeight) { dist[neighbour] = currWeight; dq.push_front( Node(neighbour, currWeight, currVal)); } else if (dist[neighbour] > currWeight + wt) { dist[neighbour] = currWeight + wt; dq.push_back(Node( neighbour, currWeight + wt, currVal)); } } } return INT_MAX; } // Driver code int main() { vector<vector< int > > adj = { { 1 }, {}, { 1, 3 }, {}, { 5 }, { 1 }, { 3, 4 } }; int ans = getMinRevEdges(adj, 0, 6); if (ans == INT_MAX) cout << -1; else cout << ans; return 0; } |
Java
// Java code to find minimum edge reversal to get // atleast one path from source to destination using 0-1 BFS // Code By: Sparsh_CBS import java.util.*; class Node { private int val; private int weight; private Integer parent; Node( int val, int weight) { this .val = val; this .weight = weight; parent = null ; } // We have used the concept of parent to avoid // a child revisiting its parent and pushing it in // the deque during the 0-1 BFS Node( int val, int distance, Integer parent) { this .val = val; this .weight = distance; this .parent = parent; } public int getVal() { return val; } public int getWeight() { return weight; } public Integer getParent() { return parent; } } public class Gfg { public static void main(String[] args) { List<List<Integer> > adj = new ArrayList<>(); for ( int i = 0 ; i < 7 ; i++) adj.add( new ArrayList<>()); adj.get( 0 ).add( 1 ); adj.get( 2 ).add( 1 ); adj.get( 5 ).add( 1 ); adj.get( 2 ).add( 3 ); adj.get( 6 ).add( 3 ); adj.get( 6 ).add( 4 ); adj.get( 4 ).add( 5 ); int ans = getMinRevEdges(adj, 0 , 6 ); if (ans == Integer.MAX_VALUE) System.out.println(- 1 ); else System.out.println(ans); } private static int getMinRevEdges(List<List<Integer> > adj, int src, int dest) { int n = adj.size(); // Create the given graph into bidirectional graph List<List<Node> > newAdj = getBiDirectionalGraph(adj); // Now, Apply 0-1 BFS using Deque to get the // shortest path // In the implementation, we will only add the // encountered node into the deque if and only if // the distance at which it was earlier explored was // strictly larger than the currently encountered // distance Deque<Node> dq = new LinkedList<>(); // Here Node is made up of : Node(int node_val, int // node_distance, int node_parent) dq.offer( new Node(src, 0 , 0 )); int [] dist = new int [n]; // Set the distance of all nodes to // infinity(Integer.MAX_VALUE) Arrays.fill(dist, Integer.MAX_VALUE); // set distance of source node as 0 dist[src] = 0 ; while (!dq.isEmpty()) { Node curr = dq.pollFirst(); int currVal = curr.getVal(); int currWeight = curr.getWeight(); int currParent = curr.getParent(); // If we encounter the destination node, we // return if (currVal == dest) return currWeight; // Iterate over the neighbours of the current // Node for (Node neighbourNode : newAdj.get(currVal)) { int neighbour = neighbourNode.getVal(); if (neighbour == currParent) continue ; int wt = neighbourNode.getWeight(); if (wt == 0 && dist[neighbour] > currWeight) { dist[neighbour] = currWeight; dq.offerFirst( new Node( neighbour, currWeight, currVal)); } else if (dist[neighbour] > currWeight + wt) { dist[neighbour] = currWeight + wt; dq.offerLast( new Node(neighbour, currWeight + wt, currVal)); } } } return Integer.MAX_VALUE; } private static List<List<Node> > getBiDirectionalGraph(List<List<Integer> > adj) { int n = adj.size(); List<List<Node> > newAdj = new ArrayList<>(); for ( int i = 0 ; i < n; i++) newAdj.add( new ArrayList<>()); boolean [] visited = new boolean [n]; Queue<Integer> queue = new LinkedList<>(); for ( int i = 0 ; i < n; i++) { if (!visited[i]) { visited[i] = true ; queue.offer(i); while (!queue.isEmpty()) { int curr = queue.poll(); for ( int neighbour : adj.get(curr)) { // original edges are to be assigned // a weight of 0 newAdj.get(curr).add( new Node(neighbour, 0 )); // make a fake edge and assign a // weight of 1 newAdj.get(neighbour).add( new Node(curr, 1 )); if (visited[neighbour]) { // if the neighbour was visited, // then dont // add it again in the queue continue ; } visited[neighbour] = true ; queue.offer(neighbour); } } } } return newAdj; } } |
Python3
# Python Code to find minimum edge reversal to get # atleast one path from source to destination using 0-1 BFS # Code By: Sparsh_CBS class Node: def __init__( self , val, weight, parent = None ): self .val = val self .weight = weight self .parent = parent def getMinRevEdges(adj, src, dest): n = len (adj) # Create the given graph into bidirectional graph newAdj = getBiDirectionalGraph(adj) # Now, Apply 0-1 BFS using Deque to get the shortest path dq = [] dq.append(Node(src, 0 , 0 )) dist = [ float ( "inf" )] * n # Set the distance of all nodes to infinity(Integer.MAX_VALUE) dist[src] = 0 # set distance of source node as 0 while len (dq): curr = dq.pop( 0 ) currVal = curr.val currWeight = curr.weight currParent = curr.parent # If we encounter the destination node, we return if currVal = = dest: return currWeight # Iterate over the neighbours of the current Node for neighbourNode in newAdj[currVal]: neighbour = neighbourNode.val if neighbour = = currParent: continue wt = neighbourNode.weight if wt = = 0 and dist[neighbour] > currWeight: dist[neighbour] = currWeight dq.append(Node(neighbour, currWeight, currVal)) elif dist[neighbour] > currWeight + wt: dist[neighbour] = currWeight + wt dq.append(Node(neighbour, currWeight + wt, currVal)) return float ( "inf" ) def getBiDirectionalGraph(adj): n = len (adj) newAdj = [[] for _ in range (n)] visited = [ False ] * n queue = [] for i in range (n): if not visited[i]: visited[i] = True queue.append(i) while len (queue): curr = queue.pop( 0 ) for neighbour in adj[curr]: # original edges are to be assigned a weight of 0 newAdj[curr].append(Node(neighbour, 0 )) # make a fake edge and assign a weight of 1 newAdj[neighbour].append(Node(curr, 1 )) if visited[neighbour]: continue # if the neighbour was visited, then dont # add it again in the queue visited[neighbour] = True queue.append(neighbour) return newAdj if __name__ = = "__main__" : adj = [[] for _ in range ( 7 )] adj[ 0 ].append( 1 ) adj[ 2 ].append( 1 ) adj[ 5 ].append( 1 ) adj[ 2 ].append( 3 ) adj[ 6 ].append( 3 ) adj[ 6 ].append( 4 ) adj[ 4 ].append( 5 ) ans = getMinRevEdges(adj, 0 , 6 ) if ans = = float ( "inf" ): print ( - 1 ) else : print (ans) |
C#
using System; using System.Collections.Generic; class Node { private int val; private int weight; private int ? parent; public Node( int val, int weight) { this .val = val; this .weight = weight; parent = null ; } // We have used the concept of parent to avoid // a child revisiting its parent and pushing it in // the deque during the 0-1 BFS public Node( int val, int distance, int ? parent) { this .val = val; this .weight = distance; this .parent = parent; } public int GetVal() { return val; } public int GetWeight() { return weight; } public int ? GetParent() { return parent; } } public class Gfg { public static void Main( string [] args) { List<List< int > > adj = new List<List< int > >(); for ( int i = 0; i < 7; i++) adj.Add( new List< int >()); adj[0].Add(1); adj[2].Add(1); adj[5].Add(1); adj[2].Add(3); adj[6].Add(3); adj[6].Add(4); adj[4].Add(5); int ans = GetMinRevEdges(adj, 0, 6); if (ans == int .MaxValue) Console.WriteLine(-1); else Console.WriteLine(ans); } private static int GetMinRevEdges(List<List< int > > adj, int src, int dest) { int n = adj.Count; // Create the given graph into bidirectional graph List<List<Node> > newAdj = GetBiDirectionalGraph(adj); // Now, Apply 0-1 BFS using Deque to get the // shortest path // In the implementation, we will only add the // encountered node into the deque if and only if // the distance at which it was earlier explored was // strictly larger than the currently encountered // distance Queue<Node> dq = new Queue<Node>(); // Here Node is made up of : Node(int node_val, int // node_distance, int? node_parent) dq.Enqueue( new Node(src, 0, null )); int [] dist = new int [n]; // Set the distance of all nodes to // infinity(int.MaxValue) Array.Fill(dist, int .MaxValue); // set distance of source node as 0 dist[src] = 0; while (dq.Count > 0) { Node curr = dq.Dequeue(); int currVal = curr.GetVal(); int currWeight = curr.GetWeight(); int ? currParent = curr.GetParent(); // If we encounter the destination node, we // return if (currVal == dest) return currWeight; // Iterate over the neighbours of the current // Node foreach (Node neighbourNode in newAdj[currVal]) { int neighbour = neighbourNode.GetVal(); if (neighbour == currParent) continue ; int wt = neighbourNode.GetWeight(); if (wt == 0 && dist[neighbour] > currWeight) { dist[neighbour] = currWeight; dq.Enqueue( new Node( neighbour, currWeight, currVal)); } else if (dist[neighbour] > currWeight + wt) { dist[neighbour] = currWeight + wt; dq.Enqueue( new Node(neighbour, currWeight + wt, currVal)); } } } // If destination is not reachable from source, // return -1 return int .MaxValue; } // Utility function to convert given graph into // bidirectional graph private static List<List<Node> > GetBiDirectionalGraph(List<List< int > > adj) { int n = adj.Count; List<List<Node> > newAdj = new List<List<Node> >(); for ( int i = 0; i < n; i++) newAdj.Add( new List<Node>()); for ( int i = 0; i < n; i++) { foreach ( int neighbour in adj[i]) { newAdj[i].Add( new Node(neighbour, 0)); newAdj[neighbour].Add( new Node(i, 1)); } } return newAdj; } } |
Javascript
// JavaScript Code to find minimum edge reversal to get // atleast one path from source to destination using 0-1 BFS // Code By: Sparsh_CBS class Node { constructor(val, weight, parent = null ) { this .val = val; this .weight = weight; this .parent = parent; } } function getMinRevEdges(adj, src, dest) { let n = adj.length; // Create the given graph into bidirectional graph let newAdj = getBiDirectionalGraph(adj); // Now, Apply 0-1 BFS using Deque to get the shortest path let dq = []; dq.push( new Node(src, 0, 0)); let dist = new Array(n).fill(Number.MAX_VALUE); // Set the distance of all nodes to infinity(Number.MAX_VALUE) dist[src] = 0; // set distance of source node as 0 while (dq.length) { let curr = dq.shift(); let currVal = curr.val; let currWeight = curr.weight; let currParent = curr.parent; // If we encounter the destination node, we return if (currVal == dest) { return currWeight; } // Iterate over the neighbours of the current Node for (let neighbourNode of newAdj[currVal]) { let neighbour = neighbourNode.val; if (neighbour == currParent) { continue ; } let wt = neighbourNode.weight; if (wt == 0 && dist[neighbour] > currWeight) { dist[neighbour] = currWeight; dq.push( new Node(neighbour, currWeight, currVal)); } else if (dist[neighbour] > currWeight + wt) { dist[neighbour] = currWeight + wt; dq.push( new Node(neighbour, currWeight + wt, currVal)); } } } return Number.MAX_VALUE; } function getBiDirectionalGraph(adj) { let n = adj.length; let newAdj = new Array(n); for (let i = 0; i < n; i++) { newAdj[i] = []; } let visited = new Array(n).fill( false ); let queue = []; for (let i = 0; i < n; i++) { if (!visited[i]) { visited[i] = true ; queue.push(i); while (queue.length) { let curr = queue.shift(); for (let neighbour of adj[curr]) { // original edges are to be assigned a weight of 0 newAdj[curr].push( new Node(neighbour, 0)); // make a fake edge and assign a weight of 1 newAdj[neighbour].push( new Node(curr, 1)); if (visited[neighbour]) { continue ; // if the neighbour was visited, then dont add it again in the queue } visited[neighbour] = true ; queue.push(neighbour); } } } } return newAdj; } let adj = [ [], [], [], [], [], [], [] ]; adj[0].push(1); adj[2].push(1); adj[5].push(1); adj[2].push(3); adj[6].push(3); adj[6].push(4); adj[4].push(5); let ans = getMinRevEdges(adj, 0, 6); if (ans == Number.MAX_VALUE) { console.log(-1); } else { console.log(ans); } |
2
Time Complexity: O(V+E)
Space Complexity: O(V+2*E)
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...