Minimum distance between any most frequent and least frequent element of an array
Given an integer array arr[] of size N, the task is to find the minimum distance between any most and least frequent element of the given array.
Examples:
Input: arr[] = {1, 1, 2, 3, 2, 3, 3}
Output: 1
Explanation: The least frequent elements are 1 and 2 which occurs at indexes: 0, 1, 2, 4.
Whereas, the most frequent element is 3 which occurs at indexes: 3, 5, 6.
So the minimum distance is (3-2) = 1.Input: arr[] = {1, 3, 4, 4, 3, 4}
Output: 2
Explanation: The least frequent element is 1 which occurs at indexes: 0.
Whereas, the most frequent element is 4 which occurs at indexes: 2, 3, 5.
So the minimum distance is (2-0) = 2.
Approach: The idea is to find the indices of least and most frequent elements in the array and find the difference between those indices which is minimum. Follow the steps below to solve the problem:
- Store the frequency of each element in a HashMap.
- Store the least and most frequent elements in separate Sets.
- Traverse from the start of the array. If the current element is the least frequent element then update the last index of the least frequent element.
- Otherwise, if the current element is the most frequent element then calculate the distance between the current and the last index of the least frequent element and update the required minimum distance.
- Similarly, traverse the array from the end and repeat step 3 and step 4 to find the minimum distance between any most and least frequent element of an array.
- Print the minimum distance.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum // distance between any two most // and least frequent element void getMinimumDistance( int a[], int n) { // Initialize sets to store the least // and the most frequent elements set< int > min_set; set< int > max_set; // Initialize variables to store // max and min frequency int max = 0, min = INT_MAX; // Initialize HashMap to store // frequency of each element map< int , int > frequency; // Loop through the array for ( int i = 0; i < n; i++) { // Store the count of each element frequency[a[i]] += 1; } // Store the least and most frequent // elements in the respective sets for ( int i = 0; i < n; i++) { // Store count of current element int count = frequency[a[i]]; // If count is equal // to max count if (count == max) { // Store in max set max_set.insert(a[i]); } // If count is greater // then max count else if (count > max) { // Empty max set max_set.clear(); // Update max count max = count; // Store in max set max_set.insert(a[i]); } // If count is equal // to min count if (count == min) { // Store in min set min_set.insert(a[i]); } // If count is less // then max count else if (count < min) { // Empty min set min_set.clear(); // Update min count min = count; // Store in min set min_set.insert(a[i]); } } // Initialize a variable to // store the minimum distance int min_dist = INT_MAX; // Initialize a variable to // store the last index of // least frequent element int last_min_found = -1; // Traverse array for ( int i = 0; i < n; i++) { // If least frequent element if (min_set.find(a[i]) != min_set.end()) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.find(a[i]) != max_set.end() && last_min_found != -1) { // Update minimum distance if ((i - last_min_found) < min_dist) min_dist = i - last_min_found; } } last_min_found = -1; // Traverse array from the end for ( int i = n - 1; i >= 0; i--) { // If least frequent element if (min_set.find(a[i]) != min_set.end()) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.find(a[i]) != max_set.end() && last_min_found != -1) { // Update minimum distance if ((last_min_found - i) > min_dist) min_dist = last_min_found - i; } } // Print the minimum distance cout << (min_dist); } // Driver Code int main() { // Given array int arr[] = { 1, 1, 2, 3, 2, 3, 3 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call getMinimumDistance(arr, N); } // This code is contributed by ukasp. |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to find the minimum // distance between any two most // and least frequent element public static void getMinimumDistance( int a[], int n) { // Initialize sets to store the least // and the most frequent elements Set<Integer> min_set = new HashSet<>(); Set<Integer> max_set = new HashSet<>(); // Initialize variables to store // max and min frequency int max = 0 , min = Integer.MAX_VALUE; // Initialize HashMap to store // frequency of each element HashMap<Integer, Integer> frequency = new HashMap<>(); // Loop through the array for ( int i = 0 ; i < n; i++) { // Store the count of each element frequency.put( a[i], frequency .getOrDefault(a[i], 0 ) + 1 ); } // Store the least and most frequent // elements in the respective sets for ( int i = 0 ; i < n; i++) { // Store count of current element int count = frequency.get(a[i]); // If count is equal // to max count if (count == max) { // Store in max set max_set.add(a[i]); } // If count is greater // then max count else if (count > max) { // Empty max set max_set.clear(); // Update max count max = count; // Store in max set max_set.add(a[i]); } // If count is equal // to min count if (count == min) { // Store in min set min_set.add(a[i]); } // If count is less // then max count else if (count < min) { // Empty min set min_set.clear(); // Update min count min = count; // Store in min set min_set.add(a[i]); } } // Initialize a variable to // store the minimum distance int min_dist = Integer.MAX_VALUE; // Initialize a variable to // store the last index of // least frequent element int last_min_found = - 1 ; // Traverse array for ( int i = 0 ; i < n; i++) { // If least frequent element if (min_set.contains(a[i])) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.contains(a[i]) && last_min_found != - 1 ) { // Update minimum distance min_dist = Math.min(min_dist, i - last_min_found); } } last_min_found = - 1 ; // Traverse array from the end for ( int i = n - 1 ; i >= 0 ; i--) { // If least frequent element if (min_set.contains(a[i])) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.contains(a[i]) && last_min_found != - 1 ) { // Update minimum distance min_dist = Math.min(min_dist, last_min_found - i); } } // Print the minimum distance System.out.println(min_dist); } // Driver Code public static void main(String[] args) { // Given array int arr[] = { 1 , 1 , 2 , 3 , 2 , 3 , 3 }; int N = arr.length; // Function Call getMinimumDistance(arr, N); } } |
Python3
# Python3 implementation of the approach import sys # Function to find the minimum # distance between any two most # and least frequent element def getMinimumDistance(a, n): # Initialize sets to store the least # and the most frequent elements min_set = {} max_set = {} # Initialize variables to store # max and min frequency max , min = 0 , sys.maxsize + 1 # Initialize HashMap to store # frequency of each element frequency = {} # Loop through the array for i in range (n): # Store the count of each element frequency[a[i]] = frequency.get(a[i], 0 ) + 1 # Store the least and most frequent # elements in the respective sets for i in range (n): # Store count of current element count = frequency[a[i]] # If count is equal # to max count if (count = = max ): # Store in max set max_set[a[i]] = 1 # If count is greater # then max count elif (count > max ): # Empty max set max_set.clear() # Update max count max = count # Store in max set max_set[a[i]] = 1 # If count is equal # to min count if (count = = min ): # Store in min set min_set[a[i]] = 1 # If count is less # then max count elif (count < min ): # Empty min set min_set.clear() # Update min count min = count # Store in min set min_set[a[i]] = 1 # Initialize a variable to # store the minimum distance min_dist = sys.maxsize + 1 # Initialize a variable to # store the last index of # least frequent element last_min_found = - 1 # Traverse array for i in range (n): # If least frequent element if (a[i] in min_set): # Update last index of # least frequent element last_min_found = i # If most frequent element if ((a[i] in max_set) and last_min_found ! = - 1 ): # Update minimum distance if i - last_min_found < min_dist: min_dist = i - last_min_found last_min_found = - 1 # Traverse array from the end for i in range (n - 1 , - 1 , - 1 ): # If least frequent element if (a[i] in min_set): # Update last index of # least frequent element last_min_found = i; # If most frequent element if ((a[i] in max_set) and last_min_found ! = - 1 ): # Update minimum distance if min_dist > last_min_found - i: min_dist = last_min_found - i # Print the minimum distance print (min_dist) # Driver Code if __name__ = = '__main__' : # Given array arr = [ 1 , 1 , 2 , 3 , 2 , 3 , 3 ] N = len (arr) # Function Call getMinimumDistance(arr, N) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; public class GFG{ // Function to find the minimum // distance between any two most // and least frequent element public static void getMinimumDistance( int [] a, int n) { // Initialize sets to store the least // and the most frequent elements HashSet< int > min_set = new HashSet< int >(); HashSet< int > max_set = new HashSet< int >(); // Initialize variables to store // max and min frequency int max = 0, min = Int32.MaxValue; // Initialize HashMap to store // frequency of each element Dictionary< int , int > frequency = new Dictionary< int , int >(); // Loop through the array for ( int i = 0; i < n; i++) { // Store the count of each element if (!frequency.ContainsKey(a[i])) frequency.Add(a[i],0); frequency[a[i]]++; } // Store the least and most frequent // elements in the respective sets for ( int i = 0; i < n; i++) { // Store count of current element int count = frequency[a[i]]; // If count is equal // to max count if (count == max) { // Store in max set max_set.Add(a[i]); } // If count is greater // then max count else if (count > max) { // Empty max set max_set.Clear(); // Update max count max = count; // Store in max set max_set.Add(a[i]); } // If count is equal // to min count if (count == min) { // Store in min set min_set.Add(a[i]); } // If count is less // then max count else if (count < min) { // Empty min set min_set.Clear(); // Update min count min = count; // Store in min set min_set.Add(a[i]); } } // Initialize a variable to // store the minimum distance int min_dist = Int32.MaxValue; // Initialize a variable to // store the last index of // least frequent element int last_min_found = -1; // Traverse array for ( int i = 0; i < n; i++) { // If least frequent element if (min_set.Contains(a[i])) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.Contains(a[i]) && last_min_found != -1) { // Update minimum distance min_dist = Math.Min(min_dist, i - last_min_found); } } last_min_found = -1; // Traverse array from the end for ( int i = n - 1; i >= 0; i--) { // If least frequent element if (min_set.Contains(a[i])) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.Contains(a[i]) && last_min_found != -1) { // Update minimum distance min_dist = Math.Min(min_dist, last_min_found - i); } } // Print the minimum distance Console.WriteLine(min_dist); } // Driver Code static public void Main () { // Given array int [] arr = { 1, 1, 2, 3, 2, 3, 3 }; int N = arr.Length; // Function Call getMinimumDistance(arr, N); } } // This code is contributed by patel2127. |
Javascript
<script> // Javascript implementation of the approach // Function to find the minimum // distance between any two most // and least frequent element function getMinimumDistance(a, n) { // Initialize sets to store the least // and the most frequent elements var min_set = new Set(); var max_set = new Set(); // Initialize variables to store // max and min frequency var max = 0, min = 1000000000; // Initialize HashMap to store // frequency of each element var frequency = new Map(); // Loop through the array for ( var i = 0; i < n; i++) { // Store the count of each element if (frequency.has(a[i])) frequency.set(a[i], frequency.get(a[i]) + 1) else frequency.set(a[i], 1) } // Store the least and most frequent // elements in the respective sets for ( var i = 0; i < n; i++) { // Store count of current element var count = frequency.get(a[i]); // If count is equal // to max count if (count == max) { // Store in max set max_set.add(a[i]); } // If count is greater // then max count else if (count > max) { // Empty max set max_set = new Set(); // Update max count max = count; // Store in max set max_set.add(a[i]); } // If count is equal // to min count if (count == min) { // Store in min set min_set.add(a[i]); } // If count is less // then max count else if (count < min) { // Empty min set min_set = new Set(); // Update min count min = count; // Store in min set min_set.add(a[i]); } } // Initialize a variable to // store the minimum distance var min_dist = 1000000000; // Initialize a variable to // store the last index of // least frequent element var last_min_found = -1; // Traverse array for ( var i = 0; i < n; i++) { // If least frequent element if (min_set.has(a[i])) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.has(a[i]) && last_min_found != -1) { // Update minimum distance if ((i - last_min_found) < min_dist) min_dist = i - last_min_found; } } last_min_found = -1; // Traverse array from the end for ( var i = n - 1; i >= 0; i--) { // If least frequent element if (min_set.has(a[i])) // Update last index of // least frequent element last_min_found = i; // If most frequent element if (max_set.has(a[i]) && last_min_found != -1) { // Update minimum distance if ((last_min_found - i) > min_dist) min_dist = last_min_found - i; } } // Print the minimum distance document.write(min_dist); } // Driver Code // Given array var arr = [ 1, 1, 2, 3, 2, 3, 3 ]; var N = arr.length; // Function Call getMinimumDistance(arr, N); // This code is contributed by itsok </script> |
1
Time Complexity: O(N), where N is the length of the array.
Auxiliary Space: O(N)
Please Login to comment...