Minimum difference between values in an array with factors 1 to M
Given an array of nums of length N and an integer M, the task is to find the minimum difference between two elements of nums such that the numbers coming between these two integers (including the selected numbers) have all factors 1, 2, 3, …, M. Return the minimum difference if it does not exist then return -1.
Examples:
Input: N = 5, M = 7, nums = [6, 4, 5, 3, 7]
Output: 3
Explanation: First number will be 4 and the second will be 7, so the numbers between 4 and 7 are: [4, 5, 7]
Factors of 4 –> (1, 2, 4)
Factors of 5 –> (1, 5)
Factors of 7 –> (1, 7)
So, it contains every number from 1, 2, 3, 4, 5, 6, 7(as M = 7)Input: N = 4, M = 2, nums = [3, 7, 2, 9]
Output: 0
Explanation: First number will be 2 and Second number is also 2
Factors of 2 –> (1, 2)
So it contains 1, 2(as M = 2)Input: N = 3, M = 4, nums = [1, 3, 7]
Output: -1
Approach: To solve the problem follow the below-given steps:
- Sort the given array in a non-decreasing array
- Find factors of every number present in the given array.
- Now we will use two pointer approach to solve the problem and we will keep track of factors in Hash Map factorFreq.
- Start from the 0th index for both the ith and jth pointer.
- Now while factorFreq size is less than M, we will keep incrementing the jth pointer.
- If the size of factorFreq is equal to M then compare the difference between the jth value and ith value and increment the ith value, make sure you don’t forget to update the factorFreq.
- Return the min value if exist.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Function to find the factors of a given integer vector< int > factorsOfNumber( int n) { vector< int > factors = { 1 }; if (n == 1) return factors; for ( int i = 2; i * i <= n; i++) { if (n % i == 0) { if (n / i == i) { factors.push_back(i); } else { factors.push_back(i); factors.push_back(n / i); } } } factors.push_back(n); return factors; } // Function to find the minimum difference of two selected // integers int findMinDifference( int nums[], int N, int M) { // Sorting given array sort(nums, nums + N); // Factors will contain the // factors of the given integers // in nums array vector< int > factors[N]; for ( int i = 0; i < N; i++) { factors[i] = factorsOfNumber(nums[i]); } // factorFreq will map the // frequency of factors which is // less than or equal to M map< int , int > factorFreq; int i = 0; int j = 0; // minDiff will contain our // final answer int minDiff = INT_MAX; // Using two pointer while (i < N && j < N) { // If factorFreq size is equal // to M, then we can increment // the pointer i if (factorFreq.size() == M) { // Updating minDiff minDiff = min(minDiff, (nums[j - 1] - nums[i])); // Updating factorFreq for ( int k = 0; k < factors[i].size(); k++) { if (factors[i][k] <= M) { factorFreq[factors[i][k]]--; if (factorFreq[factors[i][k]] == 0) factorFreq.erase(factors[i][k]); } } i++; } // Otherwise we will increment // the j pointer else { // Updating factorFreq for ( int k = 0; k < factors[j].size(); k++) { if (factors[j][k] <= M) { factorFreq[factors[j][k]]++; } } j++; } } // Checking if i<N but factorFreq // size is still equal to M, means // we can still increment i while (i < N && factorFreq.size() == M) { minDiff = min(minDiff, (nums[j - 1] - nums[i])); for ( int k = 0; k < factors[i].size(); k++) { if (factors[i][k] <= M) { factorFreq[factors[i][k]]--; if (factorFreq[factors[i][k]] == 0) factorFreq.erase(factors[i][k]); } } i++; } // Check if two numbers exist or // not and return the value if (minDiff == INT_MAX) return -1; else return minDiff; } // Driver code int main() { int N = 5; int M = 7; int nums[] = { 6, 4, 5, 3, 7 }; cout << findMinDifference(nums, N, M) << endl; return 0; } |
Java
// Java algorithm for the above approach import java.util.*; class GFG { // Driver Code public static void main(String[] args) { int N = 5 ; int M = 7 ; int [] nums = { 6 , 4 , 5 , 3 , 7 }; System.out.println(findMinDifference(nums, N, M)); } // Function to find the minimum // Difference of two selected integers public static int findMinDifference( int [] nums, int N, int M) { // Sorting given array Arrays.sort(nums); // Factors will contain the // factors of the given integers // in nums array List<Integer>[] factors = new ArrayList[N]; for ( int i = 0 ; i < N; i++) { factors[i] = factorsOfNumber(nums[i]); } // factorFreq will map the // frequency of factors which is // less than or equal to M Map<Integer, Integer> factorFreq = new HashMap<>(); int i = 0 ; int j = 0 ; // minDiff will contain our // final answer int minDiff = Integer.MAX_VALUE; // Using two pointer while (i < N && j < N) { // If factorFreq size is equal // to M, then we can increment // the pointer i if (factorFreq.size() == M) { // Updating minDiff minDiff = Math.min(minDiff, (nums[j - 1 ] - nums[i])); // Updating factorFreq for ( int k = 0 ; k < factors[i].size(); k++) { if (factors[i].get(k) <= M) { factorFreq.put( factors[i].get(k), factorFreq.get( factors[i].get(k)) - 1 ); if (factorFreq.get( factors[i].get(k)) == 0 ) factorFreq.remove( factors[i].get(k)); } } i++; } // Otherwise we will increment // the j pointer else { // Updating factorFreq for ( int k = 0 ; k < factors[j].size(); k++) { if (factors[j].get(k) <= M) { factorFreq.put( factors[j].get(k), factorFreq.getOrDefault( factors[j].get(k), 0 ) + 1 ); } } j++; } } // Checking if i<N bus factorFreq // size is still equal to M, means // we can still increment i while (i < N && factorFreq.size() == M) { minDiff = Math.min(minDiff, (nums[j - 1 ] - nums[i])); for ( int k = 0 ; k < factors[i].size(); k++) { if (factors[i].get(k) <= M) { factorFreq.put( factors[i].get(k), factorFreq.get(factors[i].get(k)) - 1 ); if (factorFreq.get(factors[i].get(k)) == 0 ) factorFreq.remove( factors[i].get(k)); } } i++; } // Check if two numbers exist or // not and return the value if (minDiff == Integer.MAX_VALUE) return - 1 ; else return minDiff; } // Function tpo find the factor // of the given integer public static List<Integer> factorsOfNumber( int n) { List<Integer> fact = new ArrayList<>(); fact.add( 1 ); if (n == 1 ) return fact; for ( int i = 2 ; i * i <= n; i++) { if (n % i == 0 ) { if (n / i == i) { fact.add(i); } else { fact.add(i); fact.add(n / i); } } } fact.add(n); return fact; } } |
Python3
# Python code implementation: import math from collections import defaultdict def findMinDifference(nums, N, M): # Sorting given array nums.sort() # Factors will contain the factors of the given integers # in nums array factors = [] for i in range (N): factors.append(factorsOfNumber(nums[i])) # factorFreq will map the frequency of factors which is # less than or equal to M factorFreq = defaultdict( int ) i = 0 j = 0 # minDiff will contain our final answer minDiff = math.inf # Using two pointer while i < N and j < N: # If factorFreq size is equal to M, then we can # increment the pointer i if len (factorFreq) = = M: # Updating minDiff minDiff = min (minDiff, nums[j - 1 ] - nums[i]) # Updating factorFreq for k in range ( len (factors[i])): if factors[i][k] < = M: factorFreq[factors[i][k]] - = 1 if factorFreq[factors[i][k]] = = 0 : del factorFreq[factors[i][k]] i + = 1 # Otherwise we will increment the j pointer else : # Updating factorFreq for k in range ( len (factors[j])): if factors[j][k] < = M: factorFreq[factors[j][k]] + = 1 j + = 1 # Checking if i<N bus factorFreq size is still equal # to M, means we can still increment i while i < N and len (factorFreq) = = M: minDiff = min (minDiff, nums[j - 1 ] - nums[i]) for k in range ( len (factors[i])): if factors[i][k] < = M: factorFreq[factors[i][k]] - = 1 if factorFreq[factors[i][k]] = = 0 : del factorFreq[factors[i][k]] i + = 1 # Check if two numbers exist or not and return the value if minDiff = = math.inf: return - 1 else : return minDiff # Function to find the factor of the given integer def factorsOfNumber(n): fact = [ 1 ] if n = = 1 : return fact for i in range ( 2 , int (math.sqrt(n)) + 1 ): if n % i = = 0 : if n / / i = = i: fact.append(i) else : fact.append(i) fact.append(n / / i) fact.append(n) return fact N = 5 M = 7 nums = [ 6 , 4 , 5 , 3 , 7 ] print (findMinDifference(nums, N, M)) # This code is contributed by lokesh. |
C#
// C# code for the approach using System; using System.Collections.Generic; using System.Linq; class GFG { // Driver's code static void Main( string [] args) { // Input int N = 5; int M = 7; int [] nums = { 6, 4, 5, 3, 7 }; // Function call Console.WriteLine(findMinDifference(nums, N, M)); } // Function to find the factors of a given integer static List< int > factorsOfNumber( int n) { List< int > factors = new List< int >{ 1 }; if (n == 1) return factors; for ( int i = 2; i * i <= n; i++) { if (n % i == 0) { if (n / i == i) { factors.Add(i); } else { factors.Add(i); factors.Add(n / i); } } } factors.Add(n); return factors; } // Function to find the minimum difference of two selected // integers static int findMinDifference( int [] nums, int N, int M) { // Sorting given array Array.Sort(nums); // Factors will contain the factors of the given // integers in nums array List<List< int > > factors = new List<List< int > >(); for ( int k = 0; k < N; k++) { factors.Add(factorsOfNumber(nums[k])); } // factorFreq will map the frequency of factors // which is less than or equal to M Dictionary< int , int > factorFreq = new Dictionary< int , int >(); int i = 0; int j = 0; // minDiff will contain our final answer int minDiff = int .MaxValue; // Using two pointer while (i < N && j < N) { // If factorFreq size is equal to M, then we can // increment the pointer i if (factorFreq.Count == M) { // Updating minDiff minDiff = Math.Min(minDiff, nums[j - 1] - nums[i]); // Updating factorFreq for ( int k = 0; k < factors[i].Count; k++) { if (factors[i][k] <= M) { factorFreq[factors[i][k]] -= 1; if (factorFreq[factors[i][k]] == 0) { factorFreq.Remove( factors[i][k]); } } } i += 1; } // Otherwise we will increment the j pointer else { // Updating factorFreq for ( int k = 0; k < factors[j].Count; k++) { if (factors[j][k] <= M) { if (factorFreq.ContainsKey( factors[j][k])) { factorFreq[factors[j][k]] += 1; } else { factorFreq.Add(factors[j][k], 1); } } } j += 1; } } // Checking if i<N bus factorFreq size is still // equal to M, means we can still increment i while (i < N && factorFreq.Count == M) { minDiff = Math.Min(minDiff, nums[j - 1] - nums[i]); for ( int k = 0; k < factors[i].Count; k++) { if (factors[i][k] <= M) { factorFreq[factors[i][k]] -= 1; if (factorFreq[factors[i][k]] == 0) { factorFreq.Remove(factors[i][k]); } } } i += 1; } // Check if two numbers exist or not and return the // value if (minDiff == int .MaxValue) return -1; else return minDiff; } } |
Javascript
// Javascript code implementation function findMinDifference(nums, N, M){ // Sorting given array nums.sort( function (a, b){ return a - b}); // Factors will contain the factors of the given integers // in nums array var factors = []; for ( var i = 0; i < N; i++){ factors.push(factorsOfNumber(nums[i])); } // factorFreq will map the frequency of factors which is // less than or equal to M var factorFreq = {}; var i = 0; var j = 0; // minDiff will contain our final answer var minDiff = Infinity; // Using two pointer while (i < N && j < N){ // If factorFreq size is equal to M, then we can // increment the pointer i if (Object.keys(factorFreq).length === M){ // Updating minDiff minDiff = Math.min(minDiff, nums[j-1] - nums[i]); // Updating factorFreq for ( var k = 0; k < factors[i].length; k++){ if (factors[i][k] <= M){ factorFreq[factors[i][k]] -= 1; if (factorFreq[factors[i][k]] === 0){ delete factorFreq[factors[i][k]]; } } } i += 1; // Otherwise we will increment the j pointer } else { // Updating factorFreq for ( var k = 0; k < factors[j].length; k++){ if (factors[j][k] <= M){ if (factorFreq[factors[j][k]]){ factorFreq[factors[j][k]] += 1; } else { factorFreq[factors[j][k]] = 1; } } } j += 1; } } // Checking if i<N bus factorFreq size is still equal // to M, means we can still increment i while (i < N && Object.keys(factorFreq).length === M){ minDiff = Math.min(minDiff, nums[j-1] - nums[i]); for ( var k = 0; k < factors[i].length; k++){ if (factors[i][k] <= M){ factorFreq[factors[i][k]] -= 1; if (factorFreq[factors[i][k]] === 0){ delete factorFreq[factors[i][k]]; } } } i += 1; } // Check if two numbers exist or not and return the value if (minDiff === Infinity){ return -1; } else { return minDiff; } } // Function to find the factor of the given integer function factorsOfNumber(n){ var fact = [1]; if (n === 1){ return fact; } for ( var i = 2; i <= Math.floor(Math.sqrt(n)); i++){ if (n % i === 0){ if (n / i === i){ fact.push(i); } else { fact.push(i); fact.push(n / i); } } } fact.push(n); return fact; } var N = 5; var M = 7; var nums = [6, 4, 5, 3, 7]; console.log(findMinDifference(nums, N, M)); |
3
Time Complexity: O(N* sqrt(N))
Auxiliary Space: O(N * sqrt(N))
Please Login to comment...