# Minimum count of starting elements chosen to visit whole Array depending on ratio of values to positions

Given an array **arr[], **the task is to calculate the minimum number of starting elements to choose from such that all other elements of the array can be visited. An element can be visited by another element only if the ratio of their values is not inversely proportional to the position of those elements in the array. The position of an element in the array is defined as its index + 1**Example:**

Input:arr = [1, 2, 3, 4]Output:1Explanation:Any element can be chosen to start visiting other elements. For the first two elements, (1/2) is not equal to (2/1). Similarly for second and third element, (2/3) is not equal to (3/2). Similar is the case for other pairs.

Input:arr = [6, 3, 2]Output:3Explanation:Here for every pair, ratio of the elements is equal to inverse ratio of their positions:

- (6/3) is equal to (2/1)
- (3/2) is equal to (3/2)
- (6/2) is equal to (3/1)

No element can be visited by another element

**Approach: **The given problem can be solved by making the observation that the elements can visit each other if **arr[i]/arr[j] != j/i**, where **j** and** i** are positions of elements. The formula can be re-written as **arr[i]*i != arr[j]*j**. Below steps can be followed:

- Iterate the array and multiply every element to its position (index + 1)
- Traverse the array again from index 1 and check if the formula holds true for every element with its previous element
- If the formula satisfies for any element then return 1 as all elements will be visited
- Otherwise, return
**N**as no elements can visit each other and all of them need to be visited initially

Below is the implementation of the above approach:

## C++

`// C++ implementation for the above approach` `#include <iostream>` `using` `namespace` `std;` `// Function to calculate minimum number` `// of elements to visit initially` `int` `minimumStudentsToInform(` `int` `A[], ` `int` `N)` `{` ` ` `// Multiply array elements` ` ` `// with their indices` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `A[i] = A[i] * (i + 1);` ` ` `}` ` ` `for` `(` `int` `i = 1; i < N; i++) {` ` ` `// If any two elements can visit` ` ` `// each other then all elements` ` ` `// in the array can be visited` ` ` `if` `(A[i] != A[i - 1]) {` ` ` `return` `1;` ` ` `}` ` ` `}` ` ` `// All elements should be` ` ` `// visited initially` ` ` `return` `N;` `}` `int` `main()` `{` ` ` `int` `A[] = { 6, 3, 2 };` ` ` `int` `N = ` `sizeof` `(A) / ` `sizeof` `(` `int` `);` ` ` `cout << minimumStudentsToInform(A, N);` ` ` `return` `0;` `}` |

## Java

`// Java implementation for the above approach` `public` `class` `GFG {` ` ` ` ` `// Function to calculate minimum number` ` ` `// of elements to visit initially` ` ` `static` `int` `minimumStudentsToInform(` `int` `A[], ` `int` `N)` ` ` `{` ` ` `// Multiply array elements` ` ` `// with their indices` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++) {` ` ` `A[i] = A[i] * (i + ` `1` `);` ` ` `}` ` ` `for` `(` `int` `i = ` `1` `; i < N; i++) {` ` ` ` ` `// If any two elements can visit` ` ` `// each other then all elements` ` ` `// in the array can be visited` ` ` `if` `(A[i] != A[i - ` `1` `]) {` ` ` ` ` `return` `1` `;` ` ` `}` ` ` `}` ` ` ` ` `// All elements should be` ` ` `// visited initially` ` ` `return` `N;` ` ` `}` ` ` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `A[] = { ` `6` `, ` `3` `, ` `2` `};` ` ` `int` `N = A.length;` ` ` `System.out.println(minimumStudentsToInform(A, N));` ` ` `}` `}` `// This code is contributed by AnkThon` |

## Python3

`# Python implementation for the above approach` `# Function to calculate minimum number` `# of elements to visit initially` `def` `minimumStudentsToInform( A, N):` ` ` ` ` `# Multiply array elements` ` ` `# with their indices` ` ` `for` `i ` `in` `range` `(N):` ` ` `A[i] ` `=` `A[i] ` `*` `(i ` `+` `1` `)` ` ` ` ` `for` `i ` `in` `range` `(` `1` `, N):` ` ` ` ` `# If any two elements can visit` ` ` `# each other then all elements` ` ` `# in the array can be visited` ` ` `if` `(A[i] !` `=` `A[i ` `-` `1` `]):` ` ` `return` `1` ` ` `# All elements should be` ` ` `# visited initially` ` ` `return` `N` `A ` `=` `[ ` `6` `, ` `3` `, ` `2` `]` `N ` `=` `len` `(A)` `print` `(minimumStudentsToInform(A, N))` `# This code is contributed by rohitsingh07052` |

## C#

`// C# implementation for the above approach` `using` `System;` `public` `class` `GFG ` `{` ` ` ` ` `// Function to calculate minimum number` ` ` `// of elements to visit initially` ` ` `static` `int` `minimumStudentsToInform(` `int` `[]A, ` `int` `N)` ` ` `{` ` ` ` ` `// Multiply array elements` ` ` `// with their indices` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `A[i] = A[i] * (i + 1);` ` ` `}` ` ` `for` `(` `int` `i = 1; i < N; i++) {` ` ` ` ` `// If any two elements can visit` ` ` `// each other then all elements` ` ` `// in the array can be visited` ` ` `if` `(A[i] != A[i - 1]) {` ` ` ` ` `return` `1;` ` ` `}` ` ` `}` ` ` ` ` `// All elements should be` ` ` `// visited initially` ` ` `return` `N;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main(` `string` `[] args)` ` ` `{` ` ` `int` `[]A = { 6, 3, 2 };` ` ` `int` `N = A.Length;` ` ` `Console.WriteLine(minimumStudentsToInform(A, N));` ` ` `}` `}` `// This code is contributed by AnkThon` |

## Javascript

`<script>` `// Javascript implementation for the above approach` `// Function to calculate minimum number` `// of elements to visit initially` `function` `minimumStudentsToInform(A, N) ` `{` ` ` `// Multiply array elements` ` ` `// with their indices` ` ` `for` `(let i = 0; i < N; i++) {` ` ` `A[i] = A[i] * (i + 1);` ` ` `}` ` ` `for` `(let i = 1; i < N; i++)` ` ` `{` ` ` ` ` `// If any two elements can visit` ` ` `// each other then all elements` ` ` `// in the array can be visited` ` ` `if` `(A[i] != A[i - 1]) {` ` ` `return` `1;` ` ` `}` ` ` `}` ` ` `// All elements should be` ` ` `// visited initially` ` ` `return` `N;` `}` `let A = [6, 3, 2];` `let N = A.length;` `document.write(minimumStudentsToInform(A, N));` `// This code is contributed by saurabh_jaiswal.` `</script>` |

**Output**

3

**Time Complexity: **O(N)**Auxiliary Space: **O(1)