Skip to content
Related Articles

Related Articles

Minimize the maximum of Array by replacing any element with other element at most K times

View Discussion
Improve Article
Save Article
  • Last Updated : 28 Jun, 2022

Given an array arr[] of size N and an integer K, the task is to minimize the value of the maximum element of the array arr[] after replacing any element of the array with any other element of that array at most K times.

Examples:

Input: arr[] = {5, 3, 3, 2, 1}, K = 3
Output: 2
Explanation: Replace the elements at index 0, 1 and 2 with the value 1.
The array becomes {1, 1, 1, 2, 1}. The maximum is 2.
This is the minimum possible maximum.

Input: arr[] = {1, -2, 3}, K = 2
Output: -2

 

Approach: The problem can be solved using the concept of Hash map based on the following idea:

If number of elements with value greater than any array elements arr[i] is K and arr[i] is the largest element fulfilling this criteria, then with at most K replacements all those values can be made at least equal to arr[i].

Follow the below illustration for a better understanding.

Illustration:

Consider arr[] = {5, 3, 3, 2, 1}, K = 3

For element 5:
        => Number of elements greater than or equal to 5 is 1.
        => K > 1

For element 3:
        => Number of elements greater than or equal to 3 is 3.
        => K ≥ 3. So not this. Because this can be converted to some other element

For element 2:
        => Number of elements greater than or equal to 2 is 4.
        => K < 4. This is the highest such element which satisfies the criteria.

So 2 is the answer.

Follow the below steps to solve the problem:

  • If K = 0, then replacement of any element is not possible, then maximum element of the array remains same.
  • If K ≥ N – 1, then replace all elements with the minimum element, so the maximum can be made to be the same as minimum of array.
  • Else, use a map to store the count of occurrences of an element of the array.
  • Traverse from the highest value of the array:
    • If the count of the element is less than K, decrement K by the count.
    • Otherwise, that element is the minimum possible maximum value.
  • Return the value of the minimum possible maximum value.

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to minimize the maximum
// element of the array
int minimizeMax(int* arr, int N, int K)
{
    int Ans;
 
    // If K >= (N - 1), then maximum
    // element changes to minimum
    // element of array
    if (K >= (N - 1)) {
        Ans = INT_MAX;
        for (int i = 0; i < N; i++)
            Ans = min(Ans, arr[i]);
    }
 
    // If K==0, then maximum element
    // remains same
    else if (K == 0) {
        Ans = INT_MIN;
        for (int i = 0; i < N; i++)
            Ans = max(Ans, arr[i]);
    }
 
    else {
        map<int, int> mp;
 
        for (int i = 0; i < N; i++) {
            mp[arr[i]]++;
        }
 
        // Create a map reverse iterator
        map<int, int>::reverse_iterator it;
 
        // Traverse map from reverse and
        // if K >= Count of current
        // element then subtract it from
        // k and move to next element
        // else return the element
        for (it = mp.rbegin();
             it != mp.rend(); it++) {
            if (K >= it->second)
                K -= it->second;
            else
                return it->first;
        }
    }
 
    // If any of first two conditions
    // satisfied then return Ans
    return Ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 3, 3, 2, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    // Function call
    cout << minimizeMax(arr, N, K) << endl;
    return 0;
}


Java




// Java code to implement the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // Function to minimize the maximum
  // element of the array
  public static int minimizeMax(int arr[], int N, int K)
  {
    int ans = 0;
 
    // If K >= (N - 1), then maximum
    // element changes to minimum
    // element of array
    if (K >= (N - 1)) {
      ans = Integer.MAX_VALUE;
      for (int i = 0; i < N; i++)
        ans = Math.min(ans, arr[i]);
    }
 
    // If K==0, then maximum element
    // remains same
    else if (K == 0) {
      ans = Integer.MIN_VALUE;
      for (int i = 0; i < N; i++)
        ans = Math.max(ans, arr[i]);
    }
 
    else
    {
 
      // Creating a map in descending order of keys
      TreeMap<Integer, Integer> mp
        = new TreeMap<>(Collections.reverseOrder());
 
      for (int i = 0; i < N; i++) {
        if (mp.get(arr[i]) != null)
          mp.put(arr[i], mp.get(arr[i]) + 1);
        else
          mp.put(arr[i], 1);
      }
 
      // Traverse map and
      // if K >= Count of current
      // element then subtract it from
      // k and move to next element
      // else return the element
      for (Map.Entry<Integer, Integer> ele :
           mp.entrySet()) {
        if (K >= ele.getValue())
          K -= ele.getValue();
        else
          return ele.getKey();
      }
    }
 
    // If any of first two conditions
    // satisfied then return Ans
    return ans;
  }
  public static void main(String[] args)
  {
    int arr[] = { 5, 3, 3, 2, 1 };
    int N = 5;
    int K = 3;
 
    // Function call
    System.out.println(minimizeMax(arr, N, K));
  }
}
 
// This code is contributed by Rohit Pradhan.


Python3




# Python code to implement the above approach
 
# Function to minimize the maximum
# element of the array
def minimizeMax(arr, N, K):
    Ans = 0
 
    # If K >= (N - 1), then maximum
    # element changes to minimum
    # element of array
    if (K >= (N - 1)):
        Ans = sys.maxsize
        for i in range(0, N):
            Ans = min(Ans, arr[i])
 
    # If K==0, then maximum element
    # remains same
    elif (K == 0):
        Ans = -1*sys.maxsize
        for i in range(0, N):
            Ans = max(Ans, arr[i])
 
    else:
        mp = dict()
 
        for i in range(N):
            if arr[i] in mp.keys():
                mp[arr[i]] += 1
            else:
                mp[arr[i]] = 1
 
        # Traverse map from reverse and
        # if K >= Count of current
        # element then subtract it from
        # k and move to next element
        # else return the element
        for x in mp:
            if (K >= mp[x]):
                K -= mp[x]
            else:
                return x
 
    # If any of first two conditions
    # satisfied then return Ans
    return Ans
 
# Driver Code
arr = [5, 3, 3, 2, 1]
N = len(arr)
K = 3
 
# Function call
print(minimizeMax(arr, N, K))
 
# This code is contributed by Taranpreet


C#




// C# code to implement the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
 
  // Function to minimize the maximum
  // element of the array
  public static int minimizeMax(int[] arr, int N, int K)
  {
    int ans = 0;
 
    // If K >= (N - 1), then maximum
    // element changes to minimum
    // element of array
    if (K >= (N - 1)) {
      ans = Int32.MaxValue;
      for (int i = 0; i < N; i++)
        ans = Math.Min(ans, arr[i]);
    }
 
    // If K==0, then maximum element
    // remains same
    else if (K == 0) {
      ans = Int32.MinValue;
      for (int i = 0; i < N; i++)
        ans = Math.Max(ans, arr[i]);
    }
 
    else {
 
      // Creating a map
      Dictionary<int, int> mp
        = new Dictionary<int, int>();
 
      for (int i = 0; i < N; i++) {
        if (!mp.ContainsKey(arr[i]))
          mp[arr[i]] = 0;
        mp[arr[i]]++;
      }
 
      // Traverse map from reverse and
      // if K >= Count of current
      // element then subtract it from
      // k and move to next element
      // else return the element
      foreach(var x in mp)
      {
        if (K >= x.Value)
          K -= x.Value;
        else
          return x.Key;
      }
    }
 
    // If any of first two conditions
    // satisfied then return Ans
    return ans;
  }
 
  public static void Main(string[] args)
  {
    int[] arr = { 5, 3, 3, 2, 1 };
    int N = 5;
    int K = 3;
 
    // Function call
    Console.WriteLine(minimizeMax(arr, N, K));
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
 
// JavaScript program for above approach
 
// Function to minimize the maximum
// element of the array
function minimizeMax(arr,N,K)
{
    let Ans;
 
    // If K >= (N - 1), then maximum
    // element changes to minimum
    // element of array
    if (K >= (N - 1)) {
        Ans = Number.MAX_VALUE;
        for (let i = 0; i < N; i++)
            Ans = Math.min(Ans, arr[i]);
    }
 
    // If K==0, then maximum element
    // remains same
    else if (K == 0) {
        Ans = Number.MIN_VALUE;
        for (let i = 0; i < N; i++)
            Ans = Math.max(Ans, arr[i]);
    }
 
    else {
        let mp = new Map();
 
        for (let i = 0; i < N; i++) {
            if(mp.has(arr[i])){
               mp.set(arr[i],mp.get(arr[i])+1);
            }
            else mp.set(arr[i],1);
        }
 
 
        // Traverse map from reverse and
        // if K >= Count of current
        // element then subtract it from
        // k and move to next element
        // else return the element
        for(let [x,y] of mp){
            if (K >= mp.get(x))
                K -= mp.get(x)
            else
                return x
        }
    }
 
    // If any of first two conditions
    // satisfied then return Ans
    return Ans;
}
 
// Driver Code
let arr = [ 5, 3, 3, 2, 1 ];
let N = arr.length;
let K = 3;
 
// Function call
document.write(minimizeMax(arr, N, K),"</br>");
 
// This code is contributed by shinjanpatra
 
</script>


Output

2

Time Complexity: O(N)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!