Skip to content
Related Articles

Related Articles

Minimize replacement of bits to make the count of 01 substring equal to 10 substring

Improve Article
Save Article
  • Last Updated : 13 Jul, 2022
Improve Article
Save Article

Given a binary string str. The task is to minimize the number of replacements of ‘0’ by ‘1’ or ‘1’ by ‘0’ to balance the binary string. A binary string is said to be balanced: “if the number of “01” substring = number of “10” substring”.

Examples:

Input: str = “101010” 
Output: 1
Explanation: “01” = 2  & “10” = 3. So change the last character to ‘1’. The modified string will be “101011” or “001010”.

Input: str = “0000100” // balanced, “01” = 1 & “10” = 1
Output: 0
Explanation: The string is already balanced.

 

Approach: One can notice that “the balanced binary string will always have it’s first character equals to last character of string.”
Only one step is required to balance it, that is s.back() = s.front(). See the proof provided below

Proof:

Above Approach can be proved by using Principal of Mathematical Induction.
NOTE: In below proof, all the cases where first character equals to last character are considered.

for n = 0    —>  empty string “”                                  // count of “10” = 0 & count of “01” = 0
for n = 1    —>  “0” or “1”                                          // count of “10” = 0 & count of “01” = 0  
for n = 2    —>  “00” or “11”                                      // count of “10” = 0 & count of “01” = 0
for n = 3 

—>  “000”    // count of “10” = 0 & count of “01” = 0
or     “111”    // count of “10” = 0 & count of “01” = 0
or     “010”    // count of “10” = 1 & count of “01” = 1
or     “101”    // count of “10” = 1 & count of “01” = 1

Hence, By  the principal of mathematical induction it will be true for every n, where n is a natural number.

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the minimum
// number of replacements
int minimizeReplacements(string str)
{
    unordered_map<string, int> count;
    string temp;
     
    // Loop to count the minimum number
    // of replacements required
    for (int i = 0; i <
        str.length() - 1; i++) {
        temp = str.substr(i, 2);
        count[temp]++;
    }
 
    return abs(count["10"] - count["01"]);
}
 
// Driver code
int main()
{
    // Given string
    string str = "101010";
    cout << minimizeReplacements(str) << endl;
    return 0;
}


Java




// Java code to implement above approach
import java.util.HashMap;
 
class GFG{
 
// Function to count the minimum
// number of replacements
static int minimizeReplacements(String str)
{
    HashMap<String,
            Integer> count = new HashMap<String,
                                         Integer>();
    String temp;
 
    // Loop to count the minimum number
    // of replacements required
    for(int i = 0; i < str.length() - 1; i++)
    {
        temp = str.substring(i, i + 2);
        if (count.containsKey(temp))
            count.put(temp, count.get(temp) + 1);
        else
            count.put(temp, 1);
    }
    return Math.abs(count.get("10") - count.get("01"));
}
 
// Driver code
public static void main(String args[])
{
     
    // Given string
    String str = "101010";
    System.out.print(minimizeReplacements(str));
}
}
 
// This code is contributed by gfgking


Python3




# Python code for the above approach
 
# Function to count the minimum
# number of replacements
def minimizeReplacements(str):
    count = {}
    temp = ""
 
   # Loop to count the minimum number
   # of replacements required
    for i in range(0, len(str)-1):
        temp = str[i: i+2]
        if temp in count:
            count[temp] = count[temp] + 1
        else:
            count[temp] = 1
    return abs(count["10"] - count["01"])
 
    # Driver code
 
    # Given string
str = "101010"
print(minimizeReplacements(str))
 
# This code is contributed by Potta Lokesh


C#




// C# code to implement above approach
using System;
using System.Collections.Generic;
class GFG
{
   
    // Function to count the minimum
    // number of replacements
    static int minimizeReplacements(string str)
    {
        Dictionary<string, int> count
            = new Dictionary<string, int>();
        string temp;
 
        // Loop to count the minimum number
        // of replacements required
        for (int i = 0; i < str.Length - 1; i++) {
            temp = str.Substring(i, 2);
            if (count.ContainsKey(temp))
                count[temp]++;
            else
                count[temp] = 1;
        }
 
        return Math.Abs(count["10"] - count["01"]);
    }
 
    // Driver code
    public static void Main()
    {
        // Given string
        string str = "101010";
        Console.WriteLine(minimizeReplacements(str));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
    // JavaScript code to implement above approach
 
    // Function to count the minimum
    // number of replacements
    const minimizeReplacements = (str) => {
        count = {};
        let temp = "";
 
        // Loop to count the minimum number
        // of replacements required
        for (let i = 0; i <
            str.length - 1; i++) {
            temp = str.substring(i, i + 2);
            if (temp in count) count[temp]++;
            else count[temp] = 1;
        }
 
        return Math.abs(count["10"] - count["01"]);
    }
 
    // Driver code
 
    // Given string
    let str = "101010";
    document.write(minimizeReplacements(str));
 
    //  This code is contributed by rakeshsahni
 
</script>


Output

1

Time Complexity: O(N)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!