Skip to content
Related Articles

Related Articles

Minimize operations to sort given array by swapping K and arr[i] if K is greater

View Discussion
Improve Article
Save Article
  • Last Updated : 16 Feb, 2022

Given an array arr[] of N integers and an integer K, the task is to find the minimum number of operations required to sort the array in non-decreasing order such that in each operation any array element arr[i] can be swapped with K if the value of (arr[i] > K).

Examples:

Input: arr[] = {0, 2, 3, 5, 4}, K = 1
Output:
Explanation:
The given array can be sorted using the following steps:

  1. For i = 1, since arr[1] > K, swapping the values of arr[1] and K. Hence, the array becomes {0, 1, 3, 5, 4} and value of K = 2.
  2. For i = 2, since arr[2] > K, swapping the values of arr[2] and K. Hence, the array becomes {0, 1, 2, 5, 4} and value of K = 3.
  3. For i = 3, since arr[3] > K, swapping the values of arr[3] and K. Hence, the array becomes {0, 1, 2, 3, 4} and value of K = 5.

After the above operations, the given array has been sorted.
 

Input: arr[] = {1, 3, 5, 9, 7}, K = 10
Output: -1

 

 

Approach: The given problem can be solved using a Greedy Approach, the idea is to minimize the value of arr[i] at each step for all i in the range [0, N – 1] which is the most optimal choice for the further array to be sorted. Therefore, if the value of arr[i] > K, swapping the values of arr[i] and K is the most optimal choice. Follow the steps below to solve the given problem:

  • Create a variable cnt, which stores the count of the operations performed. Initially cnt = 0.
  • Traverse the array arr[] using a variable i in the range [0, N-1] in increasing order of i.
  • For each index, if arr[i] > K, swap the value of K and arr[i] and increment the value of cnt by 1.
  • After every operation, check whether the array arr[] is sorted or not using the approach discussed in this article. If the array arr[] is sorted, return the value of cnt as the required answer.
  • If the array is not sorted after performing the above steps, the print -1.

Below is the implementation of the above approach:

C++




// C++ program of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of given operations in order to sort
// the array arr[] in non-decreasing order
int minimumswaps(int arr[], int N, int K)
{
    // If arr[] is already sorted, return 0
    if (is_sorted(arr, arr + N)) {
        return 0;
    }
 
    // Stores the count of operations
    int cnt = 0;
 
    // Loop to iterate over the array
    for (int i = 0; i < N; i++) {
 
        // If arr[i] is greater than K,
        // minimize the value of arr[i]
        if (arr[i] > K) {
            swap(arr[i], K);
 
            // Increment the count by 1
            cnt++;
 
            // Check if the array is sorted
            // after the last operation
            if (is_sorted(arr, arr + N)) {
 
                // Return answer
                return cnt;
            }
        }
    }
 
    // Not Possible to sort the array using
    // given operation, hence return -1
    return -1;
}
 
// Driver Code
int main()
{
    int arr[] = { 0, 2, 3, 5, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 1;
 
    cout << minimumswaps(arr, N, K);
 
    return 0;
}


Java




// Java program of the above approach
import java.io.*;
class GFG
{
    static boolean is_sorted(int arr[], int N)
    {
        for (int i = 0; i < N - 1; i++)
        {
 
            if (arr[i] > arr[i + 1])
                return false;
        }
 
        return true;
    }
 
    // Function to find the minimum number
    // of given operations in order to sort
    // the array arr[] in non-decreasing order
    static int minimumswaps(int arr[], int N, int K)
    {
       
        // If arr[] is already sorted, return 0
        if (is_sorted(arr, N)) {
            return 0;
        }
 
        // Stores the count of operations
        int cnt = 0;
 
        // Loop to iterate over the array
        for (int i = 0; i < N; i++) {
 
            // If arr[i] is greater than K,
            // minimize the value of arr[i]
            if (arr[i] > K) {
                int temp = arr[i];
                  arr[i] = K;
                  K = temp;
 
                // Increment the count by 1
                cnt++;
 
                // Check if the array is sorted
                // after the last operation
                if (is_sorted(arr, N)) {
 
                    // Return answer
                    return cnt;
                }
            }
        }
 
        // Not Possible to sort the array using
        // given operation, hence return -1
        return -1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 0, 2, 3, 5, 4 };
        int N = arr.length;
           int K = 1;
 
        System.out.println(minimumswaps(arr, N, K));
    }
}
 
// This code is contributed by Dharanendra L V.


Python3




# Python 3 program of the above approach
def is_sort(arr):
    for i in range(len(arr)-1):
        if arr[i]>arr[i+1]:
            return False
    return True
   
# Function to find the minimum number
# of given operations in order to sort
# the array arr[] in non-decreasing order
def minimumswaps(arr, N, K):
   
    # If arr[] is already sorted, return 0
    if is_sort(arr):
        return 0
 
    # Stores the count of operations
    cnt = 0
 
    # Loop to iterate over the array
    for i in range(N):
        # If arr[i] is greater than K,
        # minimize the value of arr[i]
        if(arr[i] > K):
            temp = arr[i]
            arr[i] = K
            K = temp
             
            # Increment the count by 1
            cnt += 1
 
            # Check if the array is sorted
            # after the last operation
            if is_sort(arr):
                # Return answer
                return cnt
 
    # Not Possible to sort the array using
    # given operation, hence return -1
    return -1
 
# Driver Code
if __name__ == '__main__':
    arr = [0, 2, 3, 5, 4]
    N = len(arr)
    K = 1
    print(minimumswaps(arr, N, K))
     
    # This code is contributed by bgangwar59.


C#




// C# program of the above approach
using System;
class GFG {
    static bool is_sorted(int[] arr, int N)
    {
        for (int i = 0; i < N - 1; i++) {
 
            if (arr[i] > arr[i + 1])
                return false;
        }
 
        return true;
    }
 
    // Function to find the minimum number
    // of given operations in order to sort
    // the array arr[] in non-decreasing order
    static int minimumswaps(int[] arr, int N, int K)
    {
 
        // If arr[] is already sorted, return 0
        if (is_sorted(arr, N)) {
            return 0;
        }
 
        // Stores the count of operations
        int cnt = 0;
 
        // Loop to iterate over the array
        for (int i = 0; i < N; i++) {
 
            // If arr[i] is greater than K,
            // minimize the value of arr[i]
            if (arr[i] > K) {
                int temp = arr[i];
                arr[i] = K;
                K = temp;
 
                // Increment the count by 1
                cnt++;
 
                // Check if the array is sorted
                // after the last operation
                if (is_sorted(arr, N)) {
 
                    // Return answer
                    return cnt;
                }
            }
        }
 
        // Not Possible to sort the array using
        // given operation, hence return -1
        return -1;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] arr = { 0, 2, 3, 5, 4 };
        int N = arr.Length;
        int K = 1;
 
        Console.WriteLine(minimumswaps(arr, N, K));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
        function is_sorted(arr, N) {
            for (let i = 0; i < N - 1; i++) {
 
                if (arr[i] > arr[i + 1])
                    return false;
            }
 
            return true;
        }
 
        // Function to find the minimum number
        // of given operations in order to sort
        // the array arr[] in non-decreasing order
        function minimumswaps(arr, N, K)
        {
         
            // If arr[] is already sorted, return 0
            if (is_sorted(arr, N)) {
                return 0;
            }
 
            // Stores the count of operations
            let cnt = 0;
 
            // Loop to iterate over the array
            for (let i = 0; i < N; i++) {
 
                // If arr[i] is greater than K,
                // minimize the value of arr[i]
                if (arr[i] > K) {
                    let temp = arr[i];
                    arr[i] = K;
                    K = temp;
 
                    // Increment the count by 1
                    cnt++;
 
                    // Check if the array is sorted
                    // after the last operation
                    if (is_sorted(arr, N)) {
 
                        // Return answer
                        return cnt;
                    }
                }
            }
 
            // Not Possible to sort the array using
            // given operation, hence return -1
            return -1;
        }
 
        // Driver Code
        let arr = [0, 2, 3, 5, 4];
        let N = arr.length;
        let K = 1;
 
        document.write(minimumswaps(arr, N, K));
 
     // This code is contributed by Potta Lokesh
 
    </script>


Output: 

3

 

Time Complexity: O(N2)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!