Skip to content
Related Articles

Related Articles

Minimize operations to convert Array elements to 0s

View Discussion
Improve Article
Save Article
  • Last Updated : 12 Aug, 2022
View Discussion
Improve Article
Save Article

Given an array nums[] of length N containing non-negative integers, the task is to convert all elements from index 0 to N-2 to zero, after doing the below operations minimum number of times.

  • In one operation select two indices i and j such that i < j  and all the elements between i and j has to be non-zero, then set nums[i] = nums[i] – 1 and nums[j] = nums[j] + 1.

Examples:

Input: N = 5, nums[] = [0, 2, 0, 2, 0]
Output: 5
Explanation: We need to do 5 above given operation 
to complete the task, and the operations are:

  • Select j = 3, k = 4 nums[] becomes: [0, 2, 0, 1, 1]
  • Select j = 1, k = 2 nums[] becomes: [0, 1, 1, 1, 1]
  • Select j = 1, k = 4 nums[] becomes: [0, 0, 1, 1, 2]
  • Select j = 2, k = 4 nums[] becomes: [0, 0, 0, 1, 3]
  • Select j = 3, k = 4 nums[] becomes: [0, 0, 0, 0, 4]

Input: N = 3, nums[] = [2, 0, 0]
Output: 3
Explanation: We need to do 3 above given operation 
to complete the task, and the operations are:

  • Select j = 0, k = 1 nums[] becomes: [1, 1, 0]
  • Select j = 0, k = 2 nums[] becomes: [0, 1, 1]
  • Select j = 1, k = 2 nums[] becomes: [0, 0, 2]
 

Approach: The problem can be solved based on the following idea:

  • The possible way to convert all elements from 0 to N-2 to 0 is by reducing each element from the left by 1 and adding 1 each time to the last element, until leftmost element become zero and then moving to the next index. So the number of operations will be the sum of elements from 0 to N-2.
  • But if there is a 0 present in between then first we have to convert that 0 into a positive number, so that we can perform the operation for the elements present in the left of that 0. 
  • To convert a 0 to a positive element, 1 operation will take place, so our final answer will be the sum of elements from 0 to N-2 and the number of zeros present after the first positive element. 

Follow the steps given below to implement the approach:

  • First traverse the array till you get the first non-zero element.
    • After that if element is non-zero then update ans += nums[i]
    • Else if the element is zero then update ans += 1.
  • Traverse the given array till N-2 and calculate the required answer as mentioned above.
  • Return the calculated answer.

Below is the implementation of the above approach.

C++




// C++ Algorithm for the above approach
#include <iostream>
using namespace std;
 
// Function which returns
// minimum number of operations
// required to convert array
// into target array
int minOperations(int nums[], int N)
{
   
    // ans variable contains number of
    // operations processed after traversing
    // ith element
    int ans = 0;
    int i = 0;
 
    // Traversing to get first non-zero element
    while (i < N && nums[i] == 0)
        i++;
   
    // After getting first non-zero element we will
    // apply the given operation
    while (i < N - 1) {
        if (nums[i] == 0)
            ans++;
        else
            ans += nums[i];
        i++;
    }
 
    // Returning the ans variable
    return ans;
}
 
// Driver Code
int main()
{
 
    int N = 5;
    int nums[] = { 0, 2, 0, 2, 0 };
   
    // Function Call
    int ans = minOperations(nums, N);
    cout << ans;
    return 0;
}
 
// This code is contributed by Kdheeraj.


Java




// Java algorithm of the above approach
 
import java.util.*;
 
class GFG {
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 5;
        int[] nums = { 0, 2, 0, 2, 0 };
        // Function Call
        int ans = minOperations(nums, N);
        System.out.println(ans);
    }
 
    // Function which returns
    // minimum number of operations
    // required to convert array
    // into target array
    public static int minOperations(int[] nums, int N)
    {
        // ans variable contains number of
        // operations processed after traversing
        // ith element
        int ans = 0;
        int i = 0;
 
        // Traversing to get first non-zero element
        while (i < N && nums[i] == 0)
            i++;
        // After getting first non-zero element we will
        // apply the given operation
        while (i < N - 1) {
            if (nums[i] == 0)
                ans++;
            else
                ans += nums[i];
            i++;
        }
 
        // Returning the ans variable
        return ans;
    }
}


Python3




# Python code to implement the above approach
 
# Function which returns
# minimum number of operations
# required to convert array
# into target array
def minOperations(nums, N) :
   
    # ans variable contains number of
    # operations processed after traversing
    # ith element
    ans = 0
    i = 0
 
    # Traversing to get first non-zero element
    while (i < N and nums[i] == 0) :
        i += 1
   
    # After getting first non-zero element we will
    # apply the given operation
    while (i < N - 1) :
        if (nums[i] == 0) :
            ans += 1
        else :
            ans += nums[i]
        i += 1
     
 
    # Returning the ans variable
    return ans
 
# Driver Code
if __name__ == "__main__":
 
    N = 5
    nums = [ 0, 2, 0, 2, 0 ]
   
    # Function Call
    ans = minOperations(nums, N)
    print(ans)
     
    # This code is contributed by sanjoy_62.


C#




// C# program for above approach:
using System;
class GFG {
 
  // Function which returns
  // minimum number of operations
  // required to convert array
  // into target array
  public static int minOperations(int[] nums, int N)
  {
     
    // ans variable contains number of
    // operations processed after traversing
    // ith element
    int ans = 0;
    int i = 0;
 
    // Traversing to get first non-zero element
    while (i < N && nums[i] == 0)
      i++;
    // After getting first non-zero element we will
    // apply the given operation
    while (i < N - 1) {
      if (nums[i] == 0)
        ans++;
      else
        ans += nums[i];
      i++;
    }
 
    // Returning the ans variable
    return ans;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 5;
    int[] nums = { 0, 2, 0, 2, 0 };
     
    // Function Call
    int ans = minOperations(nums, N);
    Console.Write(ans);
 
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
// Javascript Algorithm for the above approach
 
// Function which returns
// minimum number of operations
// required to convert array
// into target array
function minOperations(nums, N)
{
   
    // ans variable contains number of
    // operations processed after traversing
    // ith element
    let ans = 0;
    let i = 0;
 
    // Traversing to get first non-zero element
    while (i < N && nums[i] == 0)
        i++;
   
    // After getting first non-zero element we will
    // apply the given operation
    while (i < N - 1) {
        if (nums[i] == 0)
            ans++;
        else
            ans += nums[i];
        i++;
    }
 
    // Returning the ans variable
    return ans;
}
 
// Driver Code
    let N = 5;
    let nums = [ 0, 2, 0, 2, 0 ];
   
    // Function Call
    let ans = minOperations(nums, N);
    document.write(ans);
     
    // This code is contributed by satwik4409.
    </script>


Output

5

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!