Minimize increments or decrements required to make sum and product of array elements non-zero
Given an array arr[] of N integers, the task is to count the minimum number of increment or decrement operations required on the array such that the sum and product of all the elements of the array arr[] are non-zero.
Examples:
Input: arr[] = {-1, -1, 0, 0}
Output: 2
Explanation: Perform the following operations to update the array as:
Operation 1: Incrementing arr[2] modifies array to {-1, -1, 1, 0}.
Operation 2: Decrementing arr[3] modifies array to {-1, -1, 1, -1}.
Therefore, the sum and product of the above array is -2 and -1 which is non-zero.Input: arr[] = {-2, 1, 0}
Output: 1
Approach: The given problem can be solved based on the following observations:
- Minimum steps required to make the array product non-zero and for the product to be non-zero all elements must be non-zero.
- Minimum steps required to make the sum of the array non-zero if the sum is negative then decrement all the 0s elements by 1 and if the sum is positive then increment all the zero elements by 1 and if the sum is non-zero then, simply increment or decrement any element of the array.
Follow the below steps to solve this problem:
- Traverse the given array and count the number of zeros in the array.
- Find the sum of the given array.
- If the count of zeros is greater than 0 then the result is that count.
- Else if the sum is equal to 0, then the result is 1.
- Else the result will be 0.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the sum of array int array_sum( int arr[], int n) { int sum = 0; for ( int i = 0; i < n; i++) sum += arr[i]; // Return the sum return sum; } // Function that counts the minimum // operations required to make the // sum and product of array non-zero int countOperations( int arr[], int N) { // Stores count of zero elements int count_zeros = 0; // Iterate over the array to // count zero elements for ( int i = 0; i < N; i++) { if (arr[i] == 0) count_zeros++; } // Sum of elements of the array int sum = array_sum(arr, N); // Print the result if (count_zeros) return count_zeros; if (sum == 0) return 1; return 0; } // Driver Code int main() { // Given array arr[] int arr[] = { -1, -1, 0, 0 }; // Size of array int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << countOperations(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the // sum of array static int array_sum( int arr[], int n) { int sum = 0 ; for ( int i = 0 ; i < n; i++) sum += arr[i]; // Return the sum return sum; } // Function that counts the minimum // operations required to make the // sum and product of array non-zero static int countOperations( int arr[], int N) { // Stores count of zero // elements int count_zeros = 0 ; // Iterate over the array to // count zero elements for ( int i = 0 ; i < N; i++) { if (arr[i] == 0 ) count_zeros++; } // Sum of elements of the // array int sum = array_sum(arr, N); // Print the result if (count_zeros != 0 ) return count_zeros; if (sum == 0 ) return 1 ; return 0 ; } // Driver Code public static void main(String[] args) { // Given array arr[] int arr[] = {- 1 , - 1 , 0 , 0 }; // Size of array int N = arr.length; // Function Call System.out.print(countOperations(arr, N)); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program for the # above approach # Function to find the # sum of array def array_sum(arr, n): sum = 0 for i in range (n): sum + = arr[i] # Return the sum return sum # Function that counts the minimum # operations required to make the # sum and product of array non-zero def countOperations(arr, N): # Stores count of zero # elements count_zeros = 0 # Iterate over the array to # count zero elements for i in range (N): if (arr[i] = = 0 ): count_zeros + = 1 # Sum of elements of the # array sum = array_sum(arr, N) # Print result if (count_zeros): return count_zeros if ( sum = = 0 ): return 1 return 0 # Driver Code if __name__ = = '__main__' : # Given array arr[] arr = [ - 1 , - 1 , 0 , 0 ] # Size of array N = len (arr) # Function Call print (countOperations(arr, N)) # This code is contributed by Mohit Kumar 29 |
C#
// C# program for the above approach using System; class GFG{ // Function to find the // sum of array static int array_sum( int [] arr, int n) { int sum = 0; for ( int i = 0; i < n; i++) sum += arr[i]; // Return the sum return sum; } // Function that counts the minimum // operations required to make the // sum and product of array non-zero static int countOperations( int [] arr, int N) { // Stores count of zero // elements int count_zeros = 0; // Iterate over the array to // count zero elements for ( int i = 0; i < N; i++) { if (arr[i] == 0) count_zeros++; } // Sum of elements of the // array int sum = array_sum(arr, N); // Print the result if (count_zeros != 0) return count_zeros; if (sum == 0) return 1; return 0; } // Driver Code public static void Main() { // Given array arr[] int [] arr = { -1, -1, 0, 0 }; // Size of array int N = arr.Length; // Function call Console.Write(countOperations(arr, N)); } } // This code is contributed by code_hunt |
Javascript
<script> // Javascript program for the above approach // Function to find the // sum of array function array_sum(arr , n) { var sum = 0; for (i = 0; i < n; i++) sum += arr[i]; // Return the sum return sum; } // Function that counts the minimum // operations required to make the // sum and product of array non-zero function countOperations(arr , N) { // Stores count of zero // elements var count_zeros = 0; // Iterate over the array to // count zero elements for (i = 0; i < N; i++) { if (arr[i] == 0) count_zeros++; } // Sum of elements of the // array var sum = array_sum(arr, N); // Print the result if (count_zeros != 0) return count_zeros; if (sum == 0) return 1; return 0; } // Driver Code // Given array arr var arr = [ -1, -1, 0, 0 ]; // Size of array var N = arr.length; // Function Call document.write(countOperations(arr, N)); // This code contributed by umadevi9616 </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...