Minimize cost to color all the vertices of an Undirected Graph using given operation
Given two integers V and E representing the number of vertices and edges of an undirected graph G(V, E), a list of edges EdgeList, and an array A[] representing the cost to color each node, the task is to find the minimum cost to color the graph using the following operation:
When a node is colored, all the nodes that can be reached from it are colored without any additional cost.
Examples:
Input: V = 6, E = 5, A[] = {12, 25, 8, 11, 10, 7}, EdgeList = {{1, 2}, {1, 3}, {3, 2}, {2, 5}, {4, 6}}
Output: 15
Explanation:
On coloring the vertex 3 for a cost of 8, the vertices {1, 2, 5} gets colored at no additional cost.
On coloring the vertex 6 for a cost of 7, the only remaining vertex {4} also gets colored.
Therefore, the minimum cost = 8 + 7 = 15.Input: V =7, E = 6, A[] = {3, 5, 8, 6, 9, 11, 10}, EdgeList = {{1, 4}, {2, 1}, {2, 7}, {3, 4}, {3, 5}, {5, 6}}
Output: 5
Approach:
Follow the steps below to solve the problem:
- All the nodes are reachable from a given node form a Connected Component.
- So for each connected component, using Depth First Search, find the minimum cost node in a connected component of a graph.
Below is the implementation for the above approach:
C++
// C++ Program to find the minimum // cost to color all vertices of an // Undirected Graph #include <bits/stdc++.h> using namespace std; #define MAX 10 vector< int > adj[MAX]; // Function to add edge in the // given graph void addEdge( int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // Function to perform DFS traversal and // find the node with minimum cost void dfs( int v, int cost[], bool vis[], int & min_cost_node) { vis[v] = true ; // Update the minimum cost min_cost_node = min(min_cost_node, cost[v - 1]); for ( int i = 0; i < adj[v].size(); i++) { // Recur for all connected nodes if (vis[adj[v][i]] == false ) { dfs(adj[v][i], cost, vis, min_cost_node); } } } // Function to calculate and return // the minimum cost of coloring all // vertices of the Undirected Graph int minimumCost( int V, int cost[]) { // Marks if a vertex is // visited or not bool vis[V + 1]; // Initialize all vertices as unvisited memset (vis, false , sizeof (vis)); int min_cost = 0; // Perform DFS traversal for ( int i = 1; i <= V; i++) { // If vertex is not visited if (!vis[i]) { int min_cost_node = INT_MAX; dfs(i, cost, vis, min_cost_node); // Update minimum cost min_cost += min_cost_node; } } // Return the final cost return min_cost; } // Driver Code int main() { int V = 6, E = 5; int cost[] = { 12, 25, 8, 11, 10, 7 }; addEdge(1, 2); addEdge(1, 3); addEdge(3, 2); addEdge(2, 5); addEdge(4, 6); int min_cost = minimumCost(V, cost); cout << min_cost << endl; return 0; } |
Java
// Java program to find the minimum // cost to color all vertices of an // Undirected Graph import java.util.*; class GFG{ static final int MAX = 10 ; @SuppressWarnings ( "unchecked" ) static Vector<Integer> []adj = new Vector[MAX]; static int min_cost_node; // Function to add edge in the // given graph static void addEdge( int u, int v) { adj[u].add(v); adj[v].add(u); } // Function to perform DFS traversal and // find the node with minimum cost static void dfs( int v, int cost[], boolean vis[]) { vis[v] = true ; // Update the minimum cost min_cost_node = Math.min(min_cost_node, cost[v - 1 ]); for ( int i = 0 ; i < adj[v].size(); i++) { // Recur for all connected nodes if (vis[adj[v].get(i)] == false ) { dfs(adj[v].get(i), cost, vis); } } } // Function to calculate and return // the minimum cost of coloring all // vertices of the Undirected Graph static int minimumCost( int V, int cost[]) { // Marks if a vertex is // visited or not boolean []vis = new boolean [V + 1 ]; // Initialize all vertices as unvisited Arrays.fill(vis, false ); int min_cost = 0 ; // Perform DFS traversal for ( int i = 1 ; i <= V; i++) { // If vertex is not visited if (!vis[i]) { min_cost_node = Integer.MAX_VALUE; dfs(i, cost, vis); // Update minimum cost min_cost += min_cost_node; } } // Return the final cost return min_cost; } // Driver Code public static void main(String[] args) { int V = 6 , E = 5 ; int cost[] = { 12 , 25 , 8 , 11 , 10 , 7 }; for ( int i = 0 ; i < adj.length; i++) adj[i] = new Vector<Integer>(); addEdge( 1 , 2 ); addEdge( 1 , 3 ); addEdge( 3 , 2 ); addEdge( 2 , 5 ); addEdge( 4 , 6 ); int min_cost = minimumCost(V, cost); System.out.print(min_cost + "\n" ); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to find the minimum # cost to color all vertices of an # Undirected Graph import sys MAX = 10 adj = [[] for i in range ( MAX )] # Function to add edge in the # given graph def addEdge(u, v): adj[u].append(v) adj[v].append(u) # Function to perform DFS traversal and # find the node with minimum cost def dfs(v, cost, vis, min_cost_node): vis[v] = True # Update the minimum cost min_cost_node = min (min_cost_node, cost[v - 1 ]) for i in range ( len (adj[v])): # Recur for all connected nodes if (vis[adj[v][i]] = = False ): min_cost_node = dfs(adj[v][i], cost, vis, min_cost_node) return min_cost_node # Function to calculate and return # the minimum cost of coloring all # vertices of the Undirected Graph def minimumCost(V, cost): # Marks if a vertex is # visited or not vis = [ False for i in range (V + 1 )] min_cost = 0 # Perform DFS traversal for i in range ( 1 , V + 1 ): # If vertex is not visited if ( not vis[i]): min_cost_node = sys.maxsize min_cost_node = dfs(i, cost, vis, min_cost_node) # Update minimum cost min_cost + = min_cost_node # Return the final cost return min_cost # Driver Code if __name__ = = "__main__" : V = 6 E = 5 cost = [ 12 , 25 , 8 , 11 , 10 , 7 ] addEdge( 1 , 2 ) addEdge( 1 , 3 ) addEdge( 3 , 2 ) addEdge( 2 , 5 ) addEdge( 4 , 6 ) min_cost = minimumCost(V, cost) print (min_cost) # This code is contributed by rutvik_56 |
C#
// C# program to find the minimum // cost to color all vertices of an // Undirected Graph using System; using System.Collections.Generic; class GFG{ static readonly int MAX = 10; static List< int > []adj = new List< int >[MAX]; static int min_cost_node; // Function to add edge in the // given graph static void addEdge( int u, int v) { adj[u].Add(v); adj[v].Add(u); } // Function to perform DFS traversal and // find the node with minimum cost static void dfs( int v, int []cost, bool []vis) { vis[v] = true ; // Update the minimum cost min_cost_node = Math.Min(min_cost_node, cost[v - 1]); for ( int i = 0; i < adj[v].Count; i++) { // Recur for all connected nodes if (vis[adj[v][i]] == false ) { dfs(adj[v][i], cost, vis); } } } // Function to calculate and return // the minimum cost of coloring all // vertices of the Undirected Graph static int minimumCost( int V, int []cost) { // Marks if a vertex is // visited or not bool []vis = new bool [V + 1]; int min_cost = 0; // Perform DFS traversal for ( int i = 1; i <= V; i++) { // If vertex is not visited if (!vis[i]) { min_cost_node = int .MaxValue; dfs(i, cost, vis); // Update minimum cost min_cost += min_cost_node; } } // Return the readonly cost return min_cost; } // Driver Code public static void Main(String[] args) { int V = 6; int []cost = { 12, 25, 8, 11, 10, 7 }; for ( int i = 0; i < adj.Length; i++) adj[i] = new List< int >(); addEdge(1, 2); addEdge(1, 3); addEdge(3, 2); addEdge(2, 5); addEdge(4, 6); int min_cost = minimumCost(V, cost); Console.Write(min_cost + "\n" ); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // JavaScript Program to find the minimum // cost to color all vertices of an // Undirected Graph var MAX = 10 var adj = Array.from(Array(MAX), ()=> Array()); // Function to add edge in the // given graph function addEdge(u, v) { adj[u].push(v); adj[v].push(u); } // Function to perform DFS traversal and // find the node with minimum cost function dfs(v, cost, vis, min_cost_node) { vis[v] = true ; // Update the minimum cost min_cost_node = Math.min(min_cost_node, cost[v - 1]); for ( var i = 0; i < adj[v].length; i++) { // Recur for all connected nodes if (vis[adj[v][i]] == false ) { min_cost_node = dfs(adj[v][i], cost, vis, min_cost_node); } } return min_cost_node; } // Function to calculate and return // the minimum cost of coloring all // vertices of the Undirected Graph function minimumCost(V, cost) { // Marks if a vertex is // visited or not var vis = Array(V + 1).fill( false ); var min_cost = 0; // Perform DFS traversal for ( var i = 1; i <= V; i++) { // If vertex is not visited if (!vis[i]) { var min_cost_node = 1000000000; min_cost_node = dfs(i, cost, vis, min_cost_node); // Update minimum cost min_cost += min_cost_node; } } // Return the final cost return min_cost; } // Driver Code var V = 6, E = 5; var cost = [12, 25, 8, 11, 10, 7]; addEdge(1, 2); addEdge(1, 3); addEdge(3, 2); addEdge(2, 5); addEdge(4, 6); var min_cost = minimumCost(V, cost); document.write( min_cost ); </script> |
Output:
15
Time Complexity: O(V+E)
Auxiliary Space: O(V)
Please Login to comment...