Skip to content
Related Articles

Related Articles

Minimize cost by splitting given Array into subsets of size K and adding highest K/2 elements of each subset into cost

View Discussion
Improve Article
Save Article
  • Last Updated : 16 Feb, 2022
View Discussion
Improve Article
Save Article

Given an array arr[] of N integers and an integer K, the task is to calculate the minimum cost by spilling the array elements into subsets of size K and adding the maximum ⌈K/2⌉ elements into the cost.

Note: ⌈K/2⌉ means ceiling value of K/2.

Examples:

Input: arr[] = {1, 1, 2, 2}, K = 2
Output: 3
Explanation: The given array elements can be divided into subsets {2, 2} and {1, 1}. 
Hence, the cost will be 2 + 1 = 3, which is the minimum possible. 

Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 3
Output: 16
Explanation: The array can be split like {1, 2, 3} and {4, 5, 6}.
Now ceil(3/2) = ceil(1.5) = 2.
So take 2 highest elements from each set. 
The sum becomes 2 + 3 + 5 + 6 = 16

 

Approach: The given problem can be solved by using a greedy approach. The idea is to sort the elements in decreasing order and start forming the groups of K elements consecutively and maintain the sum of the highest ⌈K/2⌉ elements of each group in a variable. This will ensure that the elements whose cost is not considered are the maximum possible and therefore minimize the overall cost of the selected elements.

Below is the implementation of the above approach:

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum cost by splitting
// the array into subsets of size at most K
// and adding maximum K/2 elements into cost
int minimizeCost(vector<int> arr, int K)
{
    // Stores the final cost
    int ans = 0;
 
    // Sort the array arr[]
    sort(arr.begin(), arr.end(),
         greater<int>());
 
    // Loop to iterate over each
    // group of K elements
    for (int i = 0; i < arr.size();
         i += K) {
 
        // Loop to iterate over
        // maximum K/2 elements
        for (int j = i; j < i + ceil(K / 2.0)
                        && j < arr.size();
             j++) {
            ans += arr[j];
        }
    }
 
    // Return Answer
    return ans;
}
 
// Driver code
int main()
{
    vector<int> arr = { 1, 2, 3, 4, 5, 6 };
    int K = 3;
 
    cout << minimizeCost(arr, K);
    return 0;
}


Java




// JAVA program of the above approach
import java.util.*;
class GFG
{
   
    // Function to find minimum cost by splitting
    // the array into subsets of size at most K
    // and adding maximum K/2 elements into cost
    public static int minimizeCost(ArrayList<Integer> arr,
                                   int K)
    {
        // Stores the final cost
        int ans = 0;
 
        // Sort the array arr[]
        Collections.sort(arr, Collections.reverseOrder());
 
        // Loop to iterate over each
        // group of K elements
        for (int i = 0; i < arr.size(); i += K) {
 
            // Loop to iterate over
            // maximum K/2 elements
            for (int j = i; j < i + Math.ceil(K / 2.0)
                            && j < arr.size();
                 j++) {
                ans += arr.get(j);
            }
        }
 
        // Return Answer
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        ArrayList<Integer> arr = new ArrayList<>(
            Arrays.asList(1, 2, 3, 4, 5, 6));
        int K = 3;
        System.out.print(minimizeCost(arr, K));
    }
}
 
// This code is contributed by Taranpreet


Python




# Pyhton program of the above approach
import math
 
#  Function to find minimum cost by splitting
#  the array into subsets of size at most K
#  and adding maximum K/2 elements into cost
def minimizeCost(arr, K):
     
    # Stores the final cost
    ans = 0
 
    # Sort the array arr[]
    arr.sort(reverse = True)
 
    # Loop to iterate over each
    # group of K elements
    i = 0
    while(i < len(arr)):
 
        # Loop to iterate over
        # maximum K/2 elements
        j = i
        while(j < i + math.ceil(K / 2.0) and j < len(arr)):
             
            ans += arr[j]
            j += 1
             
        i += K
 
    # Return Answer
    return ans
 
# Driver code
arr = [ 1, 2, 3, 4, 5, 6 ]
K = 3
 
print(minimizeCost(arr, K))
 
# This code is contributed by samim2000.


C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
  // Function to find minimum cost by splitting
  // the array into subsets of size at most K
  // and adding maximum K/2 elements into cost
  static int minimizeCost(List<int> arr, int K)
  {
    // Stores the final cost
    int ans = 0;
 
    // Sort the array arr[]
    arr.Sort((a, b) => b - a);
 
    // Loop to iterate over each
    // group of K elements
    for (int i = 0; i < arr.Count;
         i += K) {
 
      // Loop to iterate over
      // maximum K/2 elements
      for (int j = i; j < i + Math.Ceiling(K / 2.0)
           && j < arr.Count;
           j++) {
        ans += arr[j];
      }
    }
 
    // Return Answer
    return ans;
  }
 
  // Driver Code
  public static void Main()
  {
    List<int> arr = new List<int>{ 1, 2, 3, 4, 5, 6 };
    int K = 3;
 
    Console.Write(minimizeCost(arr, K));
  }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find minimum cost by splitting
       // the array into subsets of size at most K
       // and adding maximum K/2 elements into cost
       function minimizeCost(arr, K)
       {
        
           // Stores the final cost
           let ans = 0;
 
           // Sort the array arr[]
           arr.sort(function (a, b) { return b - a })
 
           // Loop to iterate over each
           // group of K elements
           for (let i = 0; i < arr.length;
               i += K) {
 
               // Loop to iterate over
               // maximum K/2 elements
               for (let j = i; j < i + Math.ceil(K / 2.0)
                   && j < arr.length;
                   j++) {
                   ans += arr[j];
               }
           }
 
           // Return Answer
           return ans;
       }
 
       // Driver code
       let arr = [1, 2, 3, 4, 5, 6];
       let K = 3;
 
       document.write(minimizeCost(arr, K));
 
      // This code is contributed by Potta Lokesh
   </script>


Output

16

Time Complexity: O(N*log N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!