Minimize array length by repeatedly replacing pairs of unequal adjacent array elements by their sum
Given an integer array arr[], the task is to minimize the length of the given array by repeatedly replacing two unequal adjacent array elements by their sum. Once the array is reduced to its minimum possible length, i.e. no adjacent unequal pairs are remaining in the array, print the count of operations required.
Examples:
Input: arr[] = {2, 1, 3, 1}
Output: 1
Explanation:
Operation 1: {2, 1, 3, 1} -> {3, 3, 1}
Operation 2: {3, 3, 1} -> {3, 4}
Operation 3: {3, 4} -> {7}
Therefore, the minimum length the array can be reduced to is 1.Input: arr[] = {1, 1, 1, 1}
Output: 4
Explanation:
No merge operation is possible as no unequal adjacent pair can be obtained.
Hence, the minimum length of the array is 4.
Naive Approach: The simplest approach to solve the problem is to traverse the given array and for every adjacent unequal pair, replace the pair by its sum. Finally, if no unequal pair exists in the array, print the length of the array.
Time Complexity: O(N2), as we have to use nested loops for traversing N*N times.
Auxiliary Space: O(N), as we have to use extra space.
Efficient Approach: The above approach can be optimized based on the following observations:
- If all the elements of the array are equal, then no operation can be performed. Therefore, print N, i.e., the initial length of the array, as the minimum reducible length of the array
- Otherwise, the minimum length of the array will always be 1.
Therefore, to solve the problem, simply traverse the array and check if all array elements are equal or not. If found to be true, print N as the required answer. Otherwise, print 1.
Below is the implementation of the above approach:
C++
// C++ program for // the above approach #include <bits/stdc++.h> using namespace std; // Function that returns the minimum // length of the array after merging // unequal adjacent elements int minLength( int A[], int N) { // Stores the first element // and its frequency int elem = A[0], count = 1; // Traverse the array for ( int i = 1; i < N; i++) { if (A[i] == elem) { count++; } else { break ; } } // If all elements are equal if (count == N) // No merge-pair operations // can be performed return N; // Otherwise else return 1; } // Driver Code int main() { // Given array int arr[] = { 2, 1, 3, 1 }; // Length of the array int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << minLength(arr, N) << endl; return 0; } |
Java
// Java program for // the above approach import java.io.*; class GFG{ // Function that returns the minimum // length of the array // after merging unequal // adjacent elements static int minLength( int A[], int N) { // Stores the first element // and its frequency int elem = A[ 0 ], count = 1 ; // Traverse the array for ( int i = 1 ; i < N; i++) { if (A[i] == elem) { count++; } else { break ; } } // If all elements are equal if (count == N) // No merge-pair operations // can be performed return N; // Otherwise else return 1 ; } // Driver Code public static void main(String[] args) { // Given array int arr[] = { 2 , 1 , 3 , 1 }; // Length of the array int N = arr.length; // Function Call System.out.print(minLength(arr, N) + "\n" ); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program for the above approach # Function that returns the minimum # length of the array after merging # unequal adjacent elements def minLength(A, N): # Stores the first element # and its frequency elem = A[ 0 ] count = 1 # Traverse the array for i in range ( 1 , N): if (A[i] = = elem): count + = 1 else : break # If all elements are equal if (count = = N): # No merge-pair operations # can be performed return N # Otherwise else : return 1 # Driver Code # Given array arr = [ 2 , 1 , 3 , 1 ] # Length of the array N = len (arr) # Function call print (minLength(arr, N)) # This code is contributed by code_hunt |
C#
// C# program for // the above approach using System; class GFG{ // Function that returns the minimum // length of the array // after merging unequal // adjacent elements static int minLength( int []A, int N) { // Stores the first element // and its frequency int elem = A[0], count = 1; // Traverse the array for ( int i = 1; i < N; i++) { if (A[i] == elem) { count++; } else { break ; } } // If all elements are equal if (count == N) // No merge-pair operations // can be performed return N; // Otherwise else return 1; } // Driver Code public static void Main(String[] args) { // Given array int []arr = {2, 1, 3, 1}; // Length of the array int N = arr.Length; // Function Call Console.Write(minLength(arr, N) + "\n" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program for // the above approach // Function that returns the minimum // length of the array // after merging unequal // adjacent elements function minLength(A , N) { // Stores the first element // and its frequency var elem = A[0], count = 1; // Traverse the array for ( var i = 1; i < N; i++) { if (A[i] == elem) { count++; } else { break ; } } // If all elements are equal if (count == N) // No merge-pair operations // can be performed return N; // Otherwise else return 1; } // Driver Code // Given array var arr = [ 2, 1, 3, 1 ]; // Length of the array var N = arr.length; // Function Call document.write(minLength(arr, N) + "\n" ); // This code contributed by aashish1995 </script> |
1
Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.
Please Login to comment...