Skip to content
Related Articles
Open in App
Not now

Related Articles

Mersenne Prime

Improve Article
Save Article
Like Article
  • Difficulty Level : Easy
  • Last Updated : 29 Dec, 2022
Improve Article
Save Article
Like Article

Mersenne Prime is a prime number that is one less than a power of two. In other words, any prime is Mersenne Prime if it is of the form 2k-1 where k is an integer greater than or equal to 2. First few Mersenne Primes are 3, 7, 31 and 127.
The task is print all Mersenne Primes smaller than an input positive integer n.
Examples: 
 

Input: 10
Output: 3 7
3 and 7 are prime numbers smaller than or
equal to 10 and are of the form 2k-1

Input: 100
Output: 3 7 31 

 

Recommended Practice

The idea is to generate all the primes less than or equal to the given number n using Sieve of Eratosthenes. Once we have generated all such primes, we iterate through all numbers of the form 2k-1 and check if they are primes or not.
Below is the implementation of the idea.
 

C++




// Program to generate mersenne primes
#include<bits/stdc++.h>
using namespace std;
 
// Generate all prime numbers less than n.
void SieveOfEratosthenes(int n, bool prime[])
{
    // Initialize all entries of boolean array
    // as true. A value in prime[i] will finally
    // be false if i is Not a prime, else true
    // bool prime[n+1];
    for (int i=0; i<=n; i++)
        prime[i] = true;
 
    for (int p=2; p*p<=n; p++)
    {
        // If prime[p] is not changed, then it
        // is a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            for (int i=p*2; i<=n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to generate mersenne primes less
// than or equal to n
void mersennePrimes(int n)
{
    // Create a boolean array "prime[0..n]"
    bool prime[n+1];
 
    // Generating primes using Sieve
    SieveOfEratosthenes(n,prime);
 
    // Generate all numbers of the form 2^k - 1
    // and smaller than or equal to n.
    for (int k=2; ((1<<k)-1) <= n; k++)
    {
        long long num = (1<<k) - 1;
 
        // Checking whether number is prime and is
        // one less than the power of 2
        if (prime[num])
            cout << num << " ";
    }
}
 
// Driven program
int main()
{
    int n = 31;
    cout << "Mersenne prime numbers smaller "
         << "than or equal to " << n << endl;
    mersennePrimes(n);
    return 0;
}


Java




// Program to generate
// mersenne primes
import java.io.*;
 
class GFG {
     
    // Generate all prime numbers
    // less than n.
    static void SieveOfEratosthenes(int n,
                          boolean prime[])
    {
        // Initialize all entries of
        // boolean array as true. A
        // value in prime[i] will finally
        // be false if i is Not a prime,
        // else true bool prime[n+1];
        for (int i = 0; i <= n; i++)
            prime[i] = true;
     
        for (int p = 2; p * p <= n; p++)
        {
            // If prime[p] is not changed
            // , then it is a prime
            if (prime[p] == true)
            {
                // Update all multiples of p
                for (int i = p * 2; i <= n; i += p)
                    prime[i] = false;
            }
        }
    }
     
    // Function to generate mersenne
    // primes lessthan or equal to n
    static void mersennePrimes(int n)
    {
        // Create a boolean array
        // "prime[0..n]"
        boolean prime[]=new boolean[n + 1];
     
        // Generating primes
        // using Sieve
        SieveOfEratosthenes(n, prime);
     
        // Generate all numbers of
        // the form 2^k - 1 and
        // smaller than or equal to n.
        for (int k = 2; (( 1 << k) - 1) <= n; k++)
        {
            long num = ( 1 << k) - 1;
     
            // Checking whether number is
            // prime and is one less than
            // the power of 2
            if (prime[(int)(num)])
                System.out.print(num + " ");
        }
    }
     
    // Driven program
    public static void main(String args[])
    {
        int n = 31;
        System.out.println("Mersenne prime"+
                     "numbers smaller than"+
                          "or equal to "+n);
         
        mersennePrimes(n);
    }
}
 
// This code is contributed by Nikita Tiwari.


Python3




# Program to generate mersenne primes
 
# Generate all prime numbers
# less than n.
def SieveOfEratosthenes(n, prime):
 
    # Initialize all entries of boolean
    # array as true. A value in prime[i]
    # will finally be false if i is Not
    # a prime, else true bool prime[n+1]
    for i in range(0, n + 1) :
        prime[i] = True
 
    p = 2
    while(p * p <= n):
     
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True) :
         
            # Update all multiples of p
            for i in range(p * 2, n + 1, p):
                prime[i] = False
                 
        p += 1
         
# Function to generate mersenne
# primes less than or equal to n
def mersennePrimes(n) :
 
    # Create a boolean array
    # "prime[0..n]"
    prime = [0] * (n + 1)
 
    # Generating primes using Sieve
    SieveOfEratosthenes(n, prime)
 
    # Generate all numbers of the
    # form 2^k - 1 and smaller
    # than or equal to n.
    k = 2
    while(((1 << k) - 1) <= n ):
     
        num = (1 << k) - 1
 
        # Checking whether number
        # is prime and is one
        # less than the power of 2
        if (prime[num]) :
            print(num, end = " " )
             
        k += 1
     
# Driver Code
n = 31
print("Mersenne prime numbers smaller",
              "than or equal to " , n )
mersennePrimes(n)
 
# This code is contributed
# by Smitha


C#




// C# Program to generate mersenne primes
using System;
 
class GFG {
     
    // Generate all prime numbers less than n.
    static void SieveOfEratosthenes(int n,
                                bool []prime)
    {
         
        // Initialize all entries of
        // boolean array as true. A
        // value in prime[i] will finally
        // be false if i is Not a prime,
        // else true bool prime[n+1];
        for (int i = 0; i <= n; i++)
            prime[i] = true;
     
        for (int p = 2; p * p <= n; p++)
        {
             
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true)
            {
                 
                // Update all multiples of p
                for (int i = p * 2; i <= n; i += p)
                    prime[i] = false;
            }
        }
    }
     
    // Function to generate mersenne
    // primes lessthan or equal to n
    static void mersennePrimes(int n)
    {
         
        // Create a boolean array
        // "prime[0..n]"
        bool []prime = new bool[n + 1];
     
        // Generating primes
        // using Sieve
        SieveOfEratosthenes(n, prime);
     
        // Generate all numbers of
        // the form 2^k - 1 and
        // smaller than or equal to n.
        for (int k = 2; (( 1 << k) - 1) <= n; k++)
        {
            long num = ( 1 << k) - 1;
     
            // Checking whether number is
            // prime and is one less than
            // the power of 2
            if (prime[(int)(num)])
                Console.Write(num + " ");
        }
    }
     
    // Driven program
    public static void Main()
    {
        int n = 31;
         
        Console.WriteLine("Mersenne prime numbers"
               + " smaller than or equal to " + n);
         
        mersennePrimes(n);
    }
}
 
// This code is contributed by nitin mittal.


PHP




<?php
// Program to generate mersenne primes
 
// Generate all prime numbers less than n.
function SieveOf($n)
{
    // Initialize all entries of boolean
    // array as true. A value in prime[i]
    // will finally be false if i is Not
    // a prime, else true
    $prime = array($n + 1);
    for ($i = 0; $i <= $n; $i++)
        $prime[$i] = true;
 
    for ($p = 2; $p * $p <= $n; $p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if ($prime[$p] == true)
        {
            // Update all multiples of p
            for ($i = $p * 2; $i <= $n; $i += $p)
                $prime[$i] = false;
        }
    }
    return $prime;
}
 
// Function to generate mersenne
// primes less than or equal to n
function mersennePrimes($n)
{
    // Create a boolean array "prime[0..n]"
    // bool prime[n+1];
 
    // Generating primes using Sieve
    $prime = SieveOf($n);
 
    // Generate all numbers of the
    // form 2^k - 1 and smaller
    // than or equal to n.
    for ($k = 2; ((1 << $k) - 1) <= $n; $k++)
    {
        $num = (1 << $k) - 1;
 
        // Checking whether number is prime
        // and is one less than the power of 2
        if ($prime[$num])
            echo $num . " ";
 
    }
}
 
// Driver Code
$n = 31;
echo "Mersenne prime numbers smaller " .
     "than or equal to $n " .
      mersennePrimes($n);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// JavaScript to generate
// mersenne primes
 
    // Generate all prime numbers
    // less than n.
    function SieveOfEratosthenes( n,
                          prime)
    {
        // Initialize all entries of
        // boolean array as true. A
        // value in prime[i] will finally
        // be false if i is Not a prime,
        // else true bool prime[n+1];
        for (let i = 0; i <= n; i++)
            prime[i] = true;
       
        for (let p = 2; p * p <= n; p++)
        {
            // If prime[p] is not changed
            // , then it is a prime
            if (prime[p] == true)
            {
                // Update all multiples of p
                for (let i = p * 2; i <= n; i += p)
                    prime[i] = false;
            }
        }
    }
       
    // Function to generate mersenne
    // primes lessthan or equal to n
    function mersennePrimes(n)
    {
        // Create a boolean array
        // "prime[0..n]"
        let prime=[];
       
        // Generating primes
        // using Sieve
        SieveOfEratosthenes(n, prime);
       
        // Generate all numbers of
        // the form 2^k - 1 and
        // smaller than or equal to n.
        for (let k = 2; (( 1 << k) - 1) <= n; k++)
        {
            let num = ( 1 << k) - 1;
       
            // Checking whether number is
            // prime and is one less than
            // the power of 2
            if (prime[(num)])
               document.write(num + " ");
        }
    }
 
// Driver Code
        let n = 31;
        document.write("Mersenne prime"+
                     "numbers smaller than"+
                          "or equal to "+n + "<br/>");
           
        mersennePrimes(n);
 
// This code is contributed by code_hunt.
</script>


Output: 
 

Mersenne prime numbers smaller than or equal to 31
3 7 31 

Time Complexity : O (n*log(logn))

Space Complexity : O(N)

References: 
https://en.wikipedia.org/wiki/Mersenne_prime
This article is contributed by Rahul Agrawal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!