Skip to content
Related Articles

Related Articles

Merge two binary Max Heaps

View Discussion
Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 16 Aug, 2022
View Discussion
Improve Article
Save Article

Given two binary max heaps as arrays, the task is to merge the given heaps.

Examples : 

Input: a = {10, 5, 6, 2}, b = {12, 7, 9}
Output: {12, 10, 9, 2, 5, 7, 6}


 

Input: a = {2, 5, 1, 9, 12}, b = {3, 7, 4, 10}
Output: {12, 10, 7, 9, 5, 3, 1, 4, 2}

Recommended Practice

Approach: To solve the problem follow the below idea:

Create an array to store the result. Copy both given arrays one by one into result. Once all the elements have been copied, then call standard build heap to construct full merged max heap. 

Follow the given steps to solve the problem:

  • Create an array merged of size N+M
  • Copy elements of both the arrays in the array merged
  • Build Max-Heap of this array
  • Print elements of the Max-Heap

Below is the implementation of the above approach:

C




// C program to merge two max heaps.
#include <stdio.h>
 
void swap(int* a, int* b)
{
    int tmp = *a;
    *a = *b;
    *b = tmp;
}
 
// Standard heapify function to heapify a
// subtree rooted under idx. It assumes
// that subtrees of node are already heapified.
void maxHeapify(int arr[], int N, int idx)
{
    // Find largest of node and its children
    if (idx >= N)
        return;
 
    int l = 2 * idx + 1;
    int r = 2 * idx + 2;
    int max = idx;
    if (l < N && arr[l] > arr[idx])
        max = l;
    if (r < N && arr[r] > arr[max])
        max = r;
 
    // Put maximum value at root and
    // recur for the child with the
    // maximum value
    if (max != idx) {
        swap(&arr[max], &arr[idx]);
        maxHeapify(arr, N, max);
    }
}
 
// Builds a max heap of given arr[0..n-1]
void buildMaxHeap(int arr[], int N)
{
    // building the heap from first non-leaf
    // node by calling max heapify function
    for (int i = N / 2 - 1; i >= 0; i--)
        maxHeapify(arr, N, i);
}
 
// Merges max heaps a[] and b[] into merged[]
void mergeHeaps(int merged[], int a[], int b[], int N,
                int M)
{
    // Copy elements of a[] and b[] one by one
    // to merged[]
    for (int i = 0; i < N; i++)
        merged[i] = a[i];
    for (int i = 0; i < M; i++)
        merged[N + i] = b[i];
 
    // build heap for the modified array of
    // size n+m
    buildMaxHeap(merged, N + M);
}
 
// Driver's code
int main()
{
    int a[] = { 10, 5, 6, 2 };
    int b[] = { 12, 7, 9 };
 
    int N = sizeof(a) / sizeof(a[0]);
    int M = sizeof(b) / sizeof(b[0]);
 
    int merged[N + M];
 
    // Function call
    mergeHeaps(merged, a, b, N, M);
 
    for (int i = 0; i < N + M; i++)
        printf("%d ", merged[i]);
 
    return 0;
}


C++




// C++ program to merge two max heaps.
#include <bits/stdc++.h>
using namespace std;
 
// Standard heapify function to heapify a
// subtree rooted under idx. It assumes
// that subtrees of node are already heapified.
void maxHeapify(int arr[], int N, int idx)
{
    // Find largest of node and its children
    if (idx >= N)
        return;
 
    int l = 2 * idx + 1;
    int r = 2 * idx + 2;
    int max = idx;
    if (l < N && arr[l] > arr[idx])
        max = l;
    if (r < N && arr[r] > arr[max])
        max = r;
 
    // Put maximum value at root and
    // recur for the child with the
    // maximum value
    if (max != idx) {
        swap(arr[max], arr[idx]);
        maxHeapify(arr, N, max);
    }
}
 
// Builds a max heap of given arr[0..n-1]
void buildMaxHeap(int arr[], int N)
{
    // building the heap from first non-leaf
    // node by calling max heapify function
    for (int i = N / 2 - 1; i >= 0; i--)
        maxHeapify(arr, N, i);
}
 
// Merges max heaps a[] and b[] into merged[]
void mergeHeaps(int merged[], int a[], int b[], int N,
                int M)
{
    // Copy elements of a[] and b[] one by one
    // to merged[]
    for (int i = 0; i < N; i++)
        merged[i] = a[i];
    for (int i = 0; i < M; i++)
        merged[N + i] = b[i];
 
    // build heap for the modified array of
    // size n+m
    buildMaxHeap(merged, N + M);
}
 
// Driver's code
int main()
{
    int a[] = { 10, 5, 6, 2 };
    int b[] = { 12, 7, 9 };
 
    int N = sizeof(a) / sizeof(a[0]);
    int M = sizeof(b) / sizeof(b[0]);
 
    int merged[N + M];
 
    // Function call
    mergeHeaps(merged, a, b, N, M);
 
    for (int i = 0; i < N + M; i++)
        cout << merged[i] << " ";
 
    return 0;
}


Java




// Java program to merge two max heaps.
 
class GfG {
 
    // Standard heapify function to heapify a
    // subtree rooted under idx. It assumes
    // that subtrees of node are already heapified.
    public static void maxHeapify(int[] arr, int N, int i)
    {
        // Find largest of node and its children
        if (i >= N) {
            return;
        }
        int l = i * 2 + 1;
        int r = i * 2 + 2;
        int max;
        if (l < N && arr[l] > arr[i]) {
            max = l;
        }
        else
            max = i;
        if (r < N && arr[r] > arr[max]) {
            max = r;
        }
 
        // Put maximum value at root and
        // recur for the child with the
        // maximum value
        if (max != i) {
            int temp = arr[max];
            arr[max] = arr[i];
            arr[i] = temp;
            maxHeapify(arr, N, max);
        }
    }
 
    // Merges max heaps a[] and b[] into merged[]
    public static void mergeHeaps(int[] arr, int[] a,
                                  int[] b, int N, int M)
    {
        for (int i = 0; i < N; i++) {
            arr[i] = a[i];
        }
        for (int i = 0; i < M; i++) {
            arr[N + i] = b[i];
        }
        N = N + M;
 
        // Builds a max heap of given arr[0..n-1]
        for (int i = N / 2 - 1; i >= 0; i--) {
            maxHeapify(arr, N, i);
        }
    }
 
    // Driver's Code
    public static void main(String[] args)
    {
        int[] a = { 10, 5, 6, 2 };
        int[] b = { 12, 7, 9 };
        int N = a.length;
        int M = b.length;
 
        int[] merged = new int[M + N];
 
        // Function call
        mergeHeaps(merged, a, b, N, M);
 
        for (int i = 0; i < M + N; i++)
            System.out.print(merged[i] + " ");
        System.out.println();
    }
}


Python3




# Python3 program to merge two Max heaps.
 
# Standard heapify function to heapify a
# subtree rooted under idx. It assumes that
# subtrees of node are already heapified.
 
 
def MaxHeapify(arr, N, idx):
 
    # Find largest of node and
    # its children
    if idx >= N:
        return
    l = 2 * idx + 1
    r = 2 * idx + 2
    Max = 0
    if l < N and arr[l] > arr[idx]:
        Max = l
    else:
        Max = idx
    if r < N and arr[r] > arr[Max]:
        Max = r
 
    # Put Maximum value at root and
    # recur for the child with the
    # Maximum value
    if Max != idx:
        arr[Max], arr[idx] = arr[idx], arr[Max]
        MaxHeapify(arr, N, Max)
 
# Builds a Max heap of given arr[0..n-1]
 
 
def buildMaxHeap(arr, N):
 
    # building the heap from first non-leaf
    # node by calling Max heapify function
    for i in range(int(N / 2) - 1, -1, -1):
        MaxHeapify(arr, N, i)
 
# Merges Max heaps a[] and b[] into merged[]
 
 
def mergeHeaps(merged, a, b, N, M):
 
    # Copy elements of a[] and b[] one
    # by one to merged[]
    for i in range(N):
        merged[i] = a[i]
    for i in range(M):
        merged[N + i] = b[i]
 
    # build heap for the modified
    # array of size n+m
    buildMaxHeap(merged, N + M)
 
 
# Driver's code
if __name__ == '__main__':
    a = [10, 5, 6, 2]
    b = [12, 7, 9]
 
    N = len(a)
    M = len(b)
 
    merged = [0] * (M + N)
 
    # Function call
    mergeHeaps(merged, a, b, N, M)
 
    for i in range(N + M):
        print(merged[i], end=" ")
 
# This code is contributed by PranchalK


C#




// C# program to merge two max heaps.
using System;
 
class GfG {
 
    // Standard heapify function to heapify a
    // subtree rooted under idx. It assumes
    // that subtrees of node are already heapified.
    public static void maxHeapify(int[] arr, int N, int i)
    {
        // Find largest of node
        // and its children
        if (i >= N) {
            return;
        }
        int l = i * 2 + 1;
        int r = i * 2 + 2;
        int max;
        if (l < N && arr[l] > arr[i]) {
            max = l;
        }
        else
            max = i;
        if (r < N && arr[r] > arr[max]) {
            max = r;
        }
 
        // Put maximum value at root and
        // recur for the child with the
        // maximum value
        if (max != i) {
            int temp = arr[max];
            arr[max] = arr[i];
            arr[i] = temp;
            maxHeapify(arr, N, max);
        }
    }
 
    // Merges max heaps a[] and b[] into merged[]
    public static void mergeHeaps(int[] arr, int[] a,
                                  int[] b, int N, int M)
    {
        for (int i = 0; i < N; i++) {
            arr[i] = a[i];
        }
        for (int i = 0; i < M; i++) {
            arr[n + i] = b[i];
        }
        N = N + M;
 
        // Builds a max heap of given arr[0..n-1]
        for (int i = N / 2 - 1; i >= 0; i--) {
            maxHeapify(arr, N, i);
        }
    }
 
    // Driver Code
    public static void Main()
    {
        int[] a = { 10, 5, 6, 2 };
        int[] b = { 12, 7, 9 };
        int N = a.Length;
        int M = b.Length;
 
        int[] merged = new int[M + N];
 
        mergeHeaps(merged, a, b, N, M);
 
        for (int i = 0; i < M + N; i++)
            Console.Write(merged[i] + " ");
        Console.WriteLine();
    }
}
// This code is contributed by nitin mittal


PHP




<?php
     
function maxHeapify(&$arr, $N, $i)
{
    $largest = $i; // Initialize largest as root
    $l = 2*$i + 1; // left = 2*i + 1
    $r = 2*$i + 2; // right = 2*i + 2
  
    // If left child is larger than root
    if ($l < $N && $arr[$l] > $arr[$largest])
        $largest = $l;
  
    // If right child is larger than largest so far
    if ($r < $N && $arr[$r] > $arr[$largest])
        $largest = $r;
  
    // If largest is not root
    if ($largest != $i)
    {
        $swap = $arr[$i];
        $arr[$i] = $arr[$largest];
        $arr[$largest] = $swap;
  
        // Recursively heapify the affected sub-tree
        maxHeapify($arr, $N, $largest);
    }
}
 
function BuildMaxHeap(&$arr, $N)
{
      for ($i = ($N / 2) - 1; $i >= 0; $i--)
        maxHeapify($arr, $N, $i);
}
     
    // Driver's code
    $arrA = array(10, 5, 6, 2);
    $arrB = array(12, 7, 9);
      $N = sizeof($arrA)/sizeof($arrA[0]);
    $M = sizeof($arrB)/sizeof($arrB[0]);
      
    $mergedArray = array();
     
    // Push all the elements of array
    // arrA and arrB in mergedArray
    for($i = 0; $i < $N; $i++)
    array_push($mergedArray, $arrA[$i]);
       
      for($i = 0; $i < $M; $i++)
    array_push($mergedArray, $arrB[$i]);
    
    // Function call
      BuildMaxHeap($mergedArray, $N + $M);
     
      for ($i = 0; $i < $N + $M; ++$i)
           echo ($mergedArray[$i]." ");
?>


Javascript




// javascript program to merge two max heaps.
 
 
    // Standard heapify function to heapify a
    // subtree rooted under idx. It assumes
    // that subtrees of node are already heapified.
    function maxHeapify(arr , n , i)
    {
     
        // Find largest of node and its children
        if (i >= n) {
            return;
        }
        var l = i * 2 + 1;
        var r = i * 2 + 2;
        var max;
        if (l < n && arr[l] > arr[i]) {
            max = l;
        } else
            max = i;
        if (r < n && arr[r] > arr[max]) {
            max = r;
        }
 
        // Put maximum value at root and
        // recur for the child with the
        // maximum value
        if (max != i) {
            var temp = arr[max];
            arr[max] = arr[i];
            arr[i] = temp;
            maxHeapify(arr, n, max);
        }
    }
 
    // Merges max heaps a and b into merged
    function mergeHeaps(arr,  a,  b , n , m) {
        for (var i = 0; i < n; i++) {
            arr[i] = a[i];
        }
        for (var i = 0; i < m; i++) {
            arr[n + i] = b[i];
        }
        n = n + m;
 
        // Builds a max heap of given arr[0..n-1]
        for (var i = parseInt(n / 2 - 1); i >= 0; i--) {
            maxHeapify(arr, n, i);
        }
    }
 
    // Driver Code
        var a = [ 10, 5, 6, 2 ];
        var b = [ 12, 7, 9 ];
        var n = a.length;
        var m = b.length;
 
        var merged = Array(m + n).fill(0);
 
        mergeHeaps(merged, a, b, n, m);
 
        for (var i = 0; i < m + n; i++)
            document.write(merged[i] + " ");
 
// This code is contributed by umadevi9616


Output

12 10 9 2 5 7 6 

Time Complexity: O(N + M)
Auxiliary Space: O(N + M)  


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!