Merge K Sorted Linked Lists using Min Heap
Given K linked lists each of size N and each list is sorted in non-decreasing order, merge them into a single sorted (non-decreasing order) linked list and print the sorted linked list as output.
Examples:
Input: K = 3, N = 4
list1 = 1->3->5->7->NULL
list2 = 2->4->6->8->NULL
list3 = 0->9->10->11->NULLOutput: 0->1->2->3->4->5->6->7->8->9->10->11
Merged lists in a sorted order where every element is greater than the previous element.Input: K = 3, N = 3
list1 = 1->3->7->NULL
list2 = 2->4->8->NULL
list3 = 9->10->11->NULLOutput: 1->2->3->4->7->8->9->10->11
Merged lists in a sorted order where every element is greater than the previous element.
Source: Merge K sorted Linked Lists | Method 2
An efficient solution for the problem has been discussed in Method 3 of this post.
Approach (Min-Heap): To solve the problem using this approach follow the below idea:
This solution is based on the MIN HEAP approach. The process must start with creating a MinHeap and inserting the first element of all the k Linked Lists. Remove the root element of Minheap and put it in the output Linked List and insert the next element from the Linked List of removed element. To get the result the step must continue until there is no element left in the MinHeap.
Note: Mapping the elements of a heap into an array is trivial, If a node is stored at index k, then its left child is stored at index 2k + 1 and its right child at index 2k + 2.
Follow the given steps to solve the problem:
- Create a min-heap and insert the first element of all the ‘k’ linked lists.
- As long as the min-heap is not empty, perform the following steps:
- Remove the Root of the min-heap (which is the current minimum among all the elements in the min-heap) and add it to the result list.
- If there exists an element (in the same linked list) next to the element that popped out in the previous step, then insert it into the min-heap.
- Return the head node address of the merged list.
Below is the implementation of the above approach:
C++
// C++ implementation to merge k // sorted linked lists // Using MIN HEAP method #include <bits/stdc++.h> using namespace std; struct Node { int data; struct Node* next; }; // Utility function to create // a new node struct Node* newNode( int data) { // Allocate node struct Node* new_node = new Node(); // Put in the data new_node->data = data; new_node->next = NULL; return new_node; } // 'compare' function used to build // up the priority queue struct compare { bool operator()( struct Node* a, struct Node* b) { return a->data > b->data; } }; // Function to merge k sorted linked lists struct Node* mergeKSortedLists( struct Node* arr[], int K) { // Priority_queue 'pq' implemented // as min heap with the help of // 'compare' function priority_queue<Node*, vector<Node*>, compare> pq; // Push the head nodes of all // the k lists in 'pq' for ( int i = 0; i < K; i++) if (arr[i] != NULL) pq.push(arr[i]); // Handles the case when k = 0 // or lists have no elements in them if (pq.empty()) return NULL; struct Node *dummy = newNode(0); struct Node *last = dummy; // Loop till 'pq' is not empty while (!pq.empty()) { // Get the top element of 'pq' struct Node* curr = pq.top(); pq.pop(); // Add the top element of 'pq' // to the resultant merged list last->next = curr; last = last->next; // Check if there is a node // next to the 'top' node // in the list of which 'top' // node is a member if (curr->next != NULL) // Push the next node of top node // in 'pq' pq.push(curr->next); } // Address of head node of the required // merged list return dummy->next; } // Function to print the singly // linked list void printList( struct Node* head) { while (head != NULL) { cout << head->data << " " ; head = head->next; } } // Driver code int main() { // Number of linked lists int N = 3; // Number of elements in each list int K = 4; // An array of pointers storing the // head nodes of the linked lists Node* arr[N]; // Creating k = 3 sorted lists arr[0] = newNode(1); arr[0]->next = newNode(3); arr[0]->next->next = newNode(5); arr[0]->next->next->next = newNode(7); arr[1] = newNode(2); arr[1]->next = newNode(4); arr[1]->next->next = newNode(6); arr[1]->next->next->next = newNode(8); arr[2] = newNode(0); arr[2]->next = newNode(9); arr[2]->next->next = newNode(10); arr[2]->next->next->next = newNode(11); // Merge the k sorted lists struct Node* head = mergeKSortedLists(arr, N); // Print the merged list printList(head); return 0; } |
Java
// Java code for the above approach import java.io.*; import java.util.*; class Node { int data; Node next; Node( int key) { data = key; next = null ; } } // Class implements Comparator to compare Node data class NodeComparator implements Comparator<Node> { public int compare(Node k1, Node k2) { if (k1.data > k2.data) return 1 ; else if (k1.data < k2.data) return - 1 ; return 0 ; } } class GFG { // Function to merge k sorted linked lists static Node mergeKList(Node[] arr, int K) { // Priority_queue 'queue' implemented // as min heap with the help of // 'compare' function PriorityQueue<Node> queue = new PriorityQueue<>( new NodeComparator()); Node at[] = new Node[K]; Node head = new Node( 0 ); Node last = head; // Push the head nodes of all // the k lists in 'queue' for ( int i = 0 ; i < K; i++) { if (arr[i] != null ) { queue.add(arr[i]); } } // Handles the case when k = 0 // or lists have no elements in them if (queue.isEmpty()) return null ; // Loop till 'queue' is not empty while (!queue.isEmpty()) { // Get the top element of 'queue' Node curr = queue.poll(); // Add the top element of 'queue' // to the resultant merged list last.next = curr; last = last.next; // Check if there is a node // next to the 'top' node // in the list of which 'top' // node is a member if (curr.next != null ) { // Push the next node of top node // in 'queue' queue.add(curr.next); } } // Address of head node of the required // merged list return head.next; } // Print linked list public static void printList(Node node) { while (node != null ) { System.out.print(node.data + " " ); node = node.next; } } public static void main(String[] args) { int N = 3 ; // array to store head of linkedlist Node[] a = new Node[N]; // Linkedlist1 Node head1 = new Node( 1 ); a[ 0 ] = head1; head1.next = new Node( 3 ); head1.next.next = new Node( 5 ); head1.next.next.next = new Node( 7 ); // Limkedlist2 Node head2 = new Node( 2 ); a[ 1 ] = head2; head2.next = new Node( 4 ); head2.next.next = new Node( 6 ); head2.next.next.next = new Node( 8 ); // Linkedlist3 Node head3 = new Node( 0 ); a[ 2 ] = head3; head3.next = new Node( 9 ); head3.next.next = new Node( 10 ); head3.next.next.next = new Node( 11 ); Node res = mergeKList(a, N); if (res != null ) printList(res); System.out.println(); } } |
Python3
# Python implementation to merge k sorted linked lists # Using MIN HEAP method import heapq class Node: def __init__( self , data): self .data = data self . next = None def mergeKList(arr, K): # Priority_queue 'queue' implemented # as min heap with the help of # 'compare' function queue = [] for i in range (K): if arr[i] ! = None : heapq.heappush(queue, (arr[i].data, arr[i])) dummy = Node( 0 ) last = dummy while queue: curr = heapq.heappop(queue)[ 1 ] last. next = curr last = last. next if curr. next ! = None : heapq.heappush(queue, (curr. next .data, curr. next )) return dummy. next def printList(node): while node ! = None : print (node.data, end = " " ) node = node. next print () if __name__ = = "__main__" : N = 3 a = [ None ] * N # Linkedlist1 head1 = Node( 1 ) a[ 0 ] = head1 head1. next = Node( 3 ) head1. next . next = Node( 5 ) head1. next . next . next = Node( 7 ) # Limkedlist2 head2 = Node( 2 ) a[ 1 ] = head2 head2. next = Node( 4 ) head2. next . next = Node( 6 ) head2. next . next . next = Node( 8 ) # Linkedlist3 head3 = Node( 0 ) a[ 2 ] = head3 head3. next = Node( 9 ) head3. next . next = Node( 10 ) head3. next . next . next = Node( 11 ) res = mergeKList(a, N) if res ! = None : printList(res) # This code is contributed by lokesh. |
Javascript
class Node { constructor(key) { this .data = key; this .next = null ; } } // Comparator function to compare Node data function nodeComparator(k1, k2) { if (k1.data < k2.data) return -1; if (k1.data > k2.data) return 1; return 0; } class PriorityQueue { constructor(compare) { this .heap = []; this .compare = compare; } enqueue(value) { this .heap.push(value); this .bubbleUp(); } bubbleUp() { let index = this .heap.length - 1; while (index > 0) { let element = this .heap[index], parentIndex = Math.floor((index - 1) / 2), parent = this .heap[parentIndex]; if ( this .compare(element, parent) < 0) break ; this .heap[index] = parent; this .heap[parentIndex] = element; index = parentIndex; } } dequeue() { let max = this .heap[0]; let end = this .heap.pop(); if ( this .heap.length > 0) { this .heap[0] = end; this .sinkDown(0); } return max; } sinkDown(index) { let left = 2 * index + 1, right = 2 * index + 2, largest = index; if ( left < this .heap.length && this .compare( this .heap[left], this .heap[largest]) > 0 ) { largest = left; } if ( right < this .heap.length && this .compare( this .heap[right], this .heap[largest]) > 0 ) { largest = right; } if (largest !== index) { [ this .heap[largest], this .heap[index]] = [ this .heap[index], this .heap[largest], ]; this .sinkDown(largest); } } isEmpty() { return this .heap.length === 0; } } function mergeKLists(arr, K) { const queue = new PriorityQueue(nodeComparator); const at = new Array(K); const head = new Node(0); let last = head; // Push the head nodes of all the k lists in 'queue' for (let i = 0; i < K; i++) { if (arr[i] !== null ) { queue.enqueue(arr[i]); } } // Handles the case when k = 0 // or lists have no elements in them if (queue.isEmpty()) return null ; // Loop till 'queue' is not empty while (!queue.isEmpty()) { // Get the top element of 'queue' const curr = queue.dequeue(); // Add the top element of 'queue' to the resultant merged list last.next = curr; last = last.next; // Check if there is a node next to the 'top' node // in the list of which 'top' node is a member if (curr.next !== null ) { // Push the next node of top node in 'queue' queue.enqueue(curr.next); } } // Address of head node of the required merged list return head.next; } // Print linked list function printList(node) { let str = "" ; while (node !== null ) { str += `${node.data} `; node = node.next; } console.log(str); } // Testing const N = 3; // array to store head of linkedlist const a = new Array(N); // Linkedlist1 const head1 = new Node(1); a[0] = head1; head1.next = new Node(3); head1.next.next = new Node(5); head1.next.next.next = new Node(7); // Limkedlist2 const head2 = new Node(2); a[1] = head2; head2.next = new Node(4); head2.next.next = new Node(6); head2.next.next.next = new Node(8); // Linkedlist3 const head3 = new Node(0); a[2] = head3; head3.next = new Node(9); head3.next.next = new Node(10); head3.next.next.next = new Node(11); const res = mergeKLists(a, N); if (res !== null ) printList(res); console.log(); |
0 1 2 3 4 5 6 7 8 9 10 11
Time Complexity: O(N * K * log K)
Auxiliary Space: O(K)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...