Mean of given array after removal of K percent of smallest and largest array elements
Given an array arr[] and an integer K, the task is to remove K % percent array elements from the smallest and largest array elements and calculate the mean of the remaining array.
Examples:
Input: arr[] = {6, 2, 7, 5, 1, 2, 0, 3, 10, 2, 5, 0, 5, 5, 0, 8, 7, 6, 8, 0}, K = 5
Output: 4.00000
Explanation:
There are 20 elements in the array. Therefore, 5% of 20 is 1. Therefore, 1 of the smallest elements (i.e. 0) is removed and 1 element of the largest elements (i.e. 0) is removed. Therefore, mean of the remaining array is 18.
Input: arr[] = {6, 0, 7, 0, 7, 5, 7, 8, 3, 4, 0, 7, 8, 1, 6, 8, 1, 1, 2, 4}, K = 10
Output: 4.31250
Approach:
- Sort the array arr[].
- Find the size of the array.
- Calculate the K-th percent of the size of the array.
- Now, add the elements present in the indices K% to (N – 1) – K%.
- Finally, find the mean of those elements.
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate the mean // of a given array after removal // of Kth percent of smallest and // largest array elements void meanOfRemainingElements( int arr[], int N, int K) { // Sort the array sort(arr, arr + N); // Find the K-th percent // of the array size int kthPercent = (N * K) / 100; float sum = 0; // Traverse the array for ( int i = 0; i < N; i++) // Skip the first K-th // percent & last K-th // percent array elements if (i >= kthPercent && i < (N - kthPercent)) sum += arr[i]; // Mean of the rest of elements float mean = sum / (N - 2 * kthPercent); // Print mean upto 5 decimal places cout << fixed << setprecision(5) << mean << endl; } // Driver Code int main() { int arr[] = { 6, 2, 7, 5, 1, 2, 0, 3, 10, 2, 5, 0, 5, 5, 0, 8, 7, 6, 8, 0 }; int arr_size = sizeof (arr) / sizeof (arr[0]); int K = 5; meanOfRemainingElements(arr, arr_size, K); return 0; } |
Java
// Java program for the above approach import java.util.*; public class GFG { // Function to calculate the mean // of a given array after removal // of Kth percent of smallest and // largest array elements static void meanOfRemainingElements( int [] arr, int N, int K) { // Sort the array Arrays.sort(arr); // Find the K-th percent // of the array size int kthPercent = (N * K) / 100 ; float sum = 0f; // Traverse the array for ( int i = 0 ; i < N; i++) // Skip the first K-th // percent & last K-th // percent array elements if (i >= kthPercent && i < (N - kthPercent)) sum += arr[i]; // Mean of the rest of elements float mean = (sum / (N - 2 * kthPercent)); // Print mean upto 5 decimal places System.out.format( "%.5f" , mean); } // Driver Code public static void main(String args[]) { int [] arr = { 6 , 2 , 7 , 5 , 1 , 2 , 0 , 3 , 10 , 2 , 5 , 0 , 5 , 5 , 0 , 8 , 7 , 6 , 8 , 0 }; int arr_size = arr.length; int K = 5 ; meanOfRemainingElements(arr, arr_size, K); } } // This code is contributed by jana_sayantan. |
Python3
# Python program for the above approach # Function to calculate the mean # of a given array after removal # of Kth percent of smallest and # largest array elements def meanOfRemainingElements(arr, N, K): # Sort the array arr.sort() # Find the K-th percent # of the array size kthPercent = (N * K) / 100 sum = 0 # Traverse the array for i in range (N): # Skip the first K-th # percent & last K-th # percent array elements if (i > = kthPercent and i < (N - kthPercent)): sum + = arr[i] # Mean of the rest of elements mean = sum / (N - 2 * kthPercent) # Print mean upto 5 decimal places print ( '%.5f' % mean) # Driver Code arr = [ 6 , 2 , 7 , 5 , 1 , 2 , 0 , 3 , 10 , 2 , 5 , 0 , 5 , 5 , 0 , 8 , 7 , 6 , 8 , 0 ] arr_size = len (arr) K = 5 meanOfRemainingElements(arr, arr_size, K) # This code is contributed by rohitsingh07052. |
C#
// C# program for the above approach using System; class GFG { // Function to calculate the mean // of a given array after removal // of Kth percent of smallest and // largest array elements static void meanOfRemainingElements( int [] arr, int N, int K) { // Sort the array Array.Sort(arr); // Find the K-th percent // of the array size int kthPercent = (N * K) / 100; float sum = 0f; // Traverse the array for ( int i = 0; i < N; i++) // Skip the first K-th // percent & last K-th // percent array elements if (i >= kthPercent && i < (N - kthPercent)) sum += arr[i]; // Mean of the rest of elements float mean = (sum / (N - 2 * kthPercent)); // Print mean upto 5 decimal places Console.WriteLine(Math.Round(mean,5)); } // Driver Code public static void Main() { int [] arr = { 6, 2, 7, 5, 1, 2, 0, 3, 10, 2, 5, 0, 5, 5, 0, 8, 7, 6, 8, 0 }; int arr_size = arr.Length; int K = 5; meanOfRemainingElements(arr, arr_size, K); } } // This code is contributed by chitranayal. |
Javascript
<script> // Javascript program for the above approach // Function to calculate the mean // of a given array after removal // of Kth percent of smallest and // largest array elements function meanOfRemainingElements( arr, N, K) { // Sort the array arr.sort( function (a, b){ return a-b}); // Find the K-th percent // of the array size let kthPercent = Math.floor((N * K) / 100); let sum = 0; // Traverse the array for (let i = 0; i < N; i++) // Skip the first K-th // percent & last K-th // percent array elements if (i >= kthPercent && i < (N - kthPercent)) sum += arr[i]; // Mean of the rest of elements let mean = sum / (N - 2 * kthPercent); // Print mean upto 5 decimal places document.write(mean.toFixed(5)); } // Driver Code let arr = [ 6, 2, 7, 5, 1, 2, 0, 3, 10, 2, 5, 0, 5, 5, 0, 8, 7, 6, 8, 0 ]; let arr_size = arr.length; let K = 5; meanOfRemainingElements(arr, arr_size, K); </script> |
Output:
4.00000
Time Complexity: O(N * logN)
Auxiliary Space: O(1)
Please Login to comment...