 GFG App
Open App Browser
Continue

# Maximum width of a Binary Tree

Given a binary tree, the task is to find the maximum width of the given tree. The width of a tree is the maximum of the widths of all levels. Before solving the problem first, let us understand what we have to do. Binary trees are one of the most common types of trees in computer science. They are also called “balanced” trees because all of their nodes have an equal number of children. In this case, we will focus on finding the maximum value of W, which is the width of a binary tree. For example, given a binary tree with root node A, which has two children B and C, where B has two children D and E and C has one child F, the maximum width is 3.
The maximum width of a binary tree is the number of nodes in the tree that have no children. In other words, it is the minimum number of nodes in a tree that can be traversed before you need to make a choice on which node to visit next.

Example:

Input:
1
/   \
2      3
/   \       \
4     5       8
/     \
6        7
Output:  3
Explanation: For the above tree,
width of level 1 is 1,
width of level 2 is 2,
width of level 3 is 3
width of level 4 is 2.
So the maximum width of the tree is 3.

Recommended Practice

## Maximum Width using Level Order Traversal:

To get the width of each level we can use the level order traversal. The maximum among the width of all levels is the required answer.

### Level Order Traversal without queue:

This method mainly involves two functions:

• One is to count nodes at a given level (getWidth), and
• The other is to get the maximum width of the tree(getMaxWidth). getMaxWidth() makes use of getWidth() to get the width of all levels starting from the root.

Given below are the pseudo-codes for the mentioned functions.

getMaxWidth(tree)
maxWdth = 0
for i = 1 to height(tree)
width =   getWidth(tree, i);
if(width > maxWdth)
maxWdth  = width
return maxWidth

getWidth(tree, level)
if tree is NULL then return 0;
if level is 1, then return 1;
else if level greater than 1, then
return getWidth(tree->left, level-1) +
getWidth(tree->right, level-1);

Below is the implementation of the above idea:

## C++

 `// C++ program to calculate width of binary tree` `#include ` `using` `namespace` `std;`   `/* A binary tree node has data, pointer to left child` `and a pointer to right child */` `class` `node {` `public``:` `    ``int` `data;` `    ``node* left;` `    ``node* right;` `    ``node (``int` `d){` `      ``this``->data = d;` `      ``this``->left = ``this``->right = NULL;` `    ``}` `};`   `/*Function prototypes*/` `int` `getWidth(node* root, ``int` `level);` `int` `height(node* node);`   `/* Function to get the maximum width of a binary tree*/` `int` `getMaxWidth(node* root)` `{` `    ``int` `maxWidth = 0;` `    ``int` `width;` `    ``int` `h = height(root);` `    ``int` `i;`   `    ``/* Get width of each level and compare` `        ``the width with maximum width so far */` `    ``for` `(i = 1; i <= h; i++) {` `        ``width = getWidth(root, i);` `        ``if` `(width > maxWidth)` `            ``maxWidth = width;` `    ``}`   `    ``return` `maxWidth;` `}`   `/* Get width of a given level */` `int` `getWidth(node* root, ``int` `level)` `{` `    ``if` `(root == NULL)` `        ``return` `0;` `    ``if` `(level == 1)` `        ``return` `1;` `    ``else` `if` `(level > 1)` `        ``return` `getWidth(root->left, level - 1)` `               ``+ getWidth(root->right, level - 1);` `}`   `/* UTILITY FUNCTIONS */` `/* Compute the "height" of a tree -- the number of` `    ``nodes along the longest path from the root node` `    ``down to the farthest leaf node.*/` `int` `height(node* node)` `{` `    ``if` `(node == NULL)` `        ``return` `0;` `    ``else` `{` `        ``/* compute the height of each subtree */` `        ``int` `lHeight = height(node->left);` `        ``int` `rHeight = height(node->right);` `        ``/* use the larger one */`   `        ``return` `(lHeight > rHeight) ? (lHeight + 1)` `                                   ``: (rHeight + 1);` `    ``}` `}`   `/* Driver code*/` `int` `main()` `{` `    ``node* root = ``new` `node(1);` `    ``root->left = ``new` `node(2);` `    ``root->right = ``new` `node(3);` `    ``root->left->left = ``new` `node(4);` `    ``root->left->right = ``new` `node(5);` `    ``root->right->right = ``new` `node(8);` `    ``root->right->right->left = ``new` `node(6);` `    ``root->right->right->right = ``new` `node(7);`   `    ``/*` `    ``Constructed binary tree is:` `            ``1` `            ``/ \` `        ``2 3` `        ``/ \ \` `        ``4 5 8` `                ``/ \` `                ``6 7` `    ``*/`   `    ``// Function call` `    ``cout << ``"Maximum width is "` `<< getMaxWidth(root)` `         ``<< endl;` `    ``return` `0;` `}`   `// This code is contributed by rathbhupendra`

## C

 `// C program to calculate width of binary tree` `#include ` `#include `   `/* A binary tree node has data, pointer to left child` `   ``and a pointer to right child */` `struct` `node {` `    ``int` `data;` `    ``struct` `node* left;` `    ``struct` `node* right;` `};`   `/*Function prototypes*/` `int` `getWidth(``struct` `node* root, ``int` `level);` `int` `height(``struct` `node* node);` `struct` `node* newNode(``int` `data);`   `/* Function to get the maximum width of a binary tree*/` `int` `getMaxWidth(``struct` `node* root)` `{` `    ``int` `maxWidth = 0;` `    ``int` `width;` `    ``int` `h = height(root);` `    ``int` `i;`   `    ``/* Get width of each level and compare` `       ``the width with maximum width so far */` `    ``for` `(i = 1; i <= h; i++) {` `        ``width = getWidth(root, i);` `        ``if` `(width > maxWidth)` `            ``maxWidth = width;` `    ``}`   `    ``return` `maxWidth;` `}`   `/* Get width of a given level */` `int` `getWidth(``struct` `node* root, ``int` `level)` `{`   `    ``if` `(root == NULL)` `        ``return` `0;`   `    ``if` `(level == 1)` `        ``return` `1;`   `    ``else` `if` `(level > 1)` `        ``return` `getWidth(root->left, level - 1)` `               ``+ getWidth(root->right, level - 1);` `}`   `/* UTILITY FUNCTIONS */` `/* Compute the "height" of a tree -- the number of` `    ``nodes along the longest path from the root node` `    ``down to the farthest leaf node.*/` `int` `height(``struct` `node* node)` `{` `    ``if` `(node == NULL)` `        ``return` `0;` `    ``else` `{` `        ``/* compute the height of each subtree */` `        ``int` `lHeight = height(node->left);` `        ``int` `rHeight = height(node->right);` `        ``/* use the larger one */`   `        ``return` `(lHeight > rHeight) ? (lHeight + 1)` `                                   ``: (rHeight + 1);` `    ``}` `}` `/* Helper function that allocates a new node with the` `   ``given data and NULL left and right pointers. */` `struct` `node* newNode(``int` `data)` `{` `    ``struct` `node* node` `        ``= (``struct` `node*)``malloc``(``sizeof``(``struct` `node));` `    ``node->data = data;` `    ``node->left = NULL;` `    ``node->right = NULL;` `    ``return` `(node);` `}` `/* Driver code*/` `int` `main()` `{` `    ``struct` `node* root = newNode(1);` `    ``root->left = newNode(2);` `    ``root->right = newNode(3);` `    ``root->left->left = newNode(4);` `    ``root->left->right = newNode(5);` `    ``root->right->right = newNode(8);` `    ``root->right->right->left = newNode(6);` `    ``root->right->right->right = newNode(7);`   `    ``/*` `     ``Constructed binary tree is:` `            ``1` `          ``/  \` `         ``2    3` `       ``/  \     \` `      ``4   5     8` `                ``/  \` `               ``6   7` `    ``*/` `  `  `    ``// Function call` `    ``printf``(``"Maximum width is %d \n"``, getMaxWidth(root));` `    ``getchar``();` `    ``return` `0;` `}`

## Java

 `// Java program to calculate width of binary tree`   `/* A binary tree node has data, pointer to left child` `   ``and a pointer to right child */` `class` `Node {` `    ``int` `data;` `    ``Node left, right;`   `    ``Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}`   `class` `BinaryTree {` `    ``Node root;`   `    ``/* Function to get the maximum width of a binary tree*/` `    ``int` `getMaxWidth(Node node)` `    ``{` `        ``int` `maxWidth = ``0``;` `        ``int` `width;` `        ``int` `h = height(node);` `        ``int` `i;`   `        ``/* Get width of each level and compare` `           ``the width with maximum width so far */` `        ``for` `(i = ``1``; i <= h; i++) {` `            ``width = getWidth(node, i);` `            ``if` `(width > maxWidth)` `                ``maxWidth = width;` `        ``}`   `        ``return` `maxWidth;` `    ``}`   `    ``/* Get width of a given level */` `    ``int` `getWidth(Node node, ``int` `level)` `    ``{` `        ``if` `(node == ``null``)` `            ``return` `0``;`   `        ``if` `(level == ``1``)` `            ``return` `1``;` `        ``else` `if` `(level > ``1``)` `            ``return` `getWidth(node.left, level - ``1``)` `                ``+ getWidth(node.right, level - ``1``);` `        ``return` `0``;` `    ``}`   `    ``/* UTILITY FUNCTIONS */`   `    ``/* Compute the "height" of a tree -- the number of` `     ``nodes along the longest path from the root node` `     ``down to the farthest leaf node.*/` `    ``int` `height(Node node)` `    ``{` `        ``if` `(node == ``null``)` `            ``return` `0``;` `        ``else` `{` `            ``/* compute the height of each subtree */` `            ``int` `lHeight = height(node.left);` `            ``int` `rHeight = height(node.right);`   `            ``/* use the larger one */` `            ``return` `(lHeight > rHeight) ? (lHeight + ``1``)` `                                       ``: (rHeight + ``1``);` `        ``}` `    ``}`   `    ``/* Driver code */` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``BinaryTree tree = ``new` `BinaryTree();`   `        ``/*` `        ``Constructed binary tree is:` `              ``1` `            ``/  \` `           ``2    3` `         ``/  \    \` `        ``4   5     8` `                 ``/  \` `                ``6   7` `         ``*/` `        ``tree.root = ``new` `Node(``1``);` `        ``tree.root.left = ``new` `Node(``2``);` `        ``tree.root.right = ``new` `Node(``3``);` `        ``tree.root.left.left = ``new` `Node(``4``);` `        ``tree.root.left.right = ``new` `Node(``5``);` `        ``tree.root.right.right = ``new` `Node(``8``);` `        ``tree.root.right.right.left = ``new` `Node(``6``);` `        ``tree.root.right.right.right = ``new` `Node(``7``);`   `        ``// Function call` `        ``System.out.println(``"Maximum width is "` `                           ``+ tree.getMaxWidth(tree.root));` `    ``}` `}`   `// This code has been contributed by Mayank Jaiswal`

## Python3

 `# Python program to find the maximum width of` `# binary tree using Level Order Traversal.`   `# A binary tree node`     `class` `Node:`   `    ``# Constructor to create a new node` `    ``def` `__init__(``self``, data):` `        ``self``.data ``=` `data` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None`   `# Function to get the maximum width of a binary tree`     `def` `getMaxWidth(root):` `    ``maxWidth ``=` `0` `    ``h ``=` `height(root)` `    ``# Get width of each level and compare the` `    ``# width with maximum width so far` `    ``for` `i ``in` `range``(``1``, h``+``1``):` `        ``width ``=` `getWidth(root, i)` `        ``if` `(width > maxWidth):` `            ``maxWidth ``=` `width` `    ``return` `maxWidth`   `# Get width of a given level`     `def` `getWidth(root, level):` `    ``if` `root ``is` `None``:` `        ``return` `0` `    ``if` `level ``=``=` `1``:` `        ``return` `1` `    ``elif` `level > ``1``:` `        ``return` `(getWidth(root.left, level``-``1``) ``+` `                ``getWidth(root.right, level``-``1``))`   `# UTILITY FUNCTIONS` `# Compute the "height" of a tree -- the number of` `# nodes along the longest path from the root node` `# down to the farthest leaf node.`     `def` `height(node):` `    ``if` `node ``is` `None``:` `        ``return` `0` `    ``else``:`   `        ``# compute the height of each subtree` `        ``lHeight ``=` `height(node.left)` `        ``rHeight ``=` `height(node.right)`   `        ``# use the larger one` `        ``return` `(lHeight``+``1``) ``if` `(lHeight > rHeight) ``else` `(rHeight``+``1``)`     `# Driver code` `root ``=` `Node(``1``)` `root.left ``=` `Node(``2``)` `root.right ``=` `Node(``3``)` `root.left.left ``=` `Node(``4``)` `root.left.right ``=` `Node(``5``)` `root.right.right ``=` `Node(``8``)` `root.right.right.left ``=` `Node(``6``)` `root.right.right.right ``=` `Node(``7``)`   `"""` `Constructed binary tree is:` `    ``1` `    ``/ \` `    ``2 3` `    ``/ \     \` `4 5 8 ` `        ``/ \` `        ``6 7` `"""` `# Function call` `print` `(``"Maximum width is %d"` `%` `(getMaxWidth(root)))`   `# This code is contributed by Naveen Aili`

## C#

 `// C# program to calculate width of binary tree` `using` `System;`   `/* A binary tree node has data, pointer to left child` `and a pointer to right child */` `public` `class` `Node {` `    ``public` `int` `data;` `    ``public` `Node left, right;`   `    ``public` `Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}`   `public` `class` `BinaryTree {` `    ``public` `Node root;`   `    ``/* Function to get the maximum width of a binary tree*/` `    ``public` `virtual` `int` `getMaxWidth(Node node)` `    ``{` `        ``int` `maxWidth = 0;` `        ``int` `width;` `        ``int` `h = height(node);` `        ``int` `i;`   `        ``/* Get width of each level and compare` `        ``the width with maximum width so far */` `        ``for` `(i = 1; i <= h; i++) {` `            ``width = getWidth(node, i);` `            ``if` `(width > maxWidth) {` `                ``maxWidth = width;` `            ``}` `        ``}`   `        ``return` `maxWidth;` `    ``}`   `    ``/* Get width of a given level */` `    ``public` `virtual` `int` `getWidth(Node node, ``int` `level)` `    ``{` `        ``if` `(node == ``null``) {` `            ``return` `0;` `        ``}`   `        ``if` `(level == 1) {` `            ``return` `1;` `        ``}` `        ``else` `if` `(level > 1) {` `            ``return` `getWidth(node.left, level - 1)` `                ``+ getWidth(node.right, level - 1);` `        ``}` `        ``return` `0;` `    ``}`   `    ``/* UTILITY FUNCTIONS */`   `    ``/* Compute the "height" of a tree -- the number of` `    ``nodes along the longest path from the root node` `    ``down to the farthest leaf node.*/` `    ``public` `virtual` `int` `height(Node node)` `    ``{` `        ``if` `(node == ``null``) {` `            ``return` `0;` `        ``}` `        ``else` `{` `            ``/* compute the height of each subtree */` `            ``int` `lHeight = height(node.left);` `            ``int` `rHeight = height(node.right);`   `            ``/* use the larger one */` `            ``return` `(lHeight > rHeight) ? (lHeight + 1)` `                                       ``: (rHeight + 1);` `        ``}` `    ``}`   `    ``/* Driver code */` `    ``public` `static` `void` `Main(``string``[] args)` `    ``{` `        ``BinaryTree tree = ``new` `BinaryTree();`   `        ``/*` `        ``Constructed binary tree is:` `            ``1` `            ``/ \` `        ``2 3` `        ``/ \ \` `        ``4 5     8` `                ``/ \` `                ``6 7` `        ``*/` `        ``tree.root = ``new` `Node(1);` `        ``tree.root.left = ``new` `Node(2);` `        ``tree.root.right = ``new` `Node(3);` `        ``tree.root.left.left = ``new` `Node(4);` `        ``tree.root.left.right = ``new` `Node(5);` `        ``tree.root.right.right = ``new` `Node(8);` `        ``tree.root.right.right.left = ``new` `Node(6);` `        ``tree.root.right.right.right = ``new` `Node(7);` ` `  `        ``// Function call` `        ``Console.WriteLine(``"Maximum width is "` `                          ``+ tree.getMaxWidth(tree.root));` `    ``}` `}`   `// This code is contributed by Shrikant13`

## Javascript

 ``

Output

`Maximum width is 3`

Time Complexity: O(N2) in the worst case.
Auxiliary Space: O(1)

We can use Queue-based level order traversal to optimize the time complexity of this method. The Queue-based level order traversal will take O(N) time in the worst case. Thanks to Nitish, DivyaC, and tech.login.id2 for suggesting this optimization.

### Level Order Traversal using Queue

When a queue is used, we can count all the nodes in a level in constant time. This reduces the complexity to be a linear one.

In this method do the following:

• Store all the child nodes at the current level in the queue.
• Count the total number of nodes after the level order traversal for a particular level is completed.
• Since the queue now contains all the nodes of the next level, we can easily find out the total number of nodes in the next level by finding the size of the queue.
• Follow the same procedure for the successive levels.
• Store and update the maximum number of nodes found at each level.

Below is the implementation of the above approach.

## C++

 `// A queue based C++ program to find maximum width` `// of a Binary Tree` `#include ` `using` `namespace` `std;`   `/* A binary tree node has data, pointer to left child` `   ``and a pointer to right child */` `struct` `Node {` `    ``int` `data;` `    ``struct` `Node* left;` `    ``struct` `Node* right;` `    ``Node(``int` `d)` `    ``{` `        ``this``->data = d;` `        ``this``->left = ``this``->right = NULL;` `    ``}` `};`   `// Function to find the maximum width of the tree` `// using level order traversal` `int` `maxWidth(``struct` `Node* root)` `{` `    ``// Base case` `    ``if` `(root == NULL)` `        ``return` `0;`   `    ``// Initialize result` `    ``int` `result = 0;`   `    ``// Do Level order traversal keeping track of number` `    ``// of nodes at every level.` `    ``queue q;` `    ``q.push(root);` `    ``while` `(!q.empty()) {` `        ``// Get the size of queue when the level order` `        ``// traversal for one level finishes` `        ``int` `count = q.size();`   `        ``// Update the maximum node count value` `        ``result = max(count, result);`   `        ``// Iterate for all the nodes in the queue currently` `        ``while` `(count--) {` `            ``// Dequeue an node from queue` `            ``Node* temp = q.front();` `            ``q.pop();`   `            ``// Enqueue left and right children of` `            ``// dequeued node` `            ``if` `(temp->left != NULL)` `                ``q.push(temp->left);` `            ``if` `(temp->right != NULL)` `                ``q.push(temp->right);` `        ``}` `    ``}`   `    ``return` `result;` `}`   `// Driver code` `int` `main()` `{` `    ``struct` `Node* root = ``new` `Node(1);` `    ``root->left = ``new` `Node(2);` `    ``root->right = ``new` `Node(3);` `    ``root->left->left = ``new` `Node(4);` `    ``root->left->right = ``new` `Node(5);` `    ``root->right->right = ``new` `Node(8);` `    ``root->right->right->left = ``new` `Node(6);` `    ``root->right->right->right = ``new` `Node(7);`   `    ``/*   Constructed Binary tree is:` `                 ``1` `               ``/   \` `             ``2      3` `           ``/  \      \` `          ``4    5      8` `                    ``/   \` `                   ``6     7    */`   `    ``// Function call` `    ``cout << ``"Maximum width is "` `<< maxWidth(root) << endl;` `    ``return` `0;` `}`   `// This code is contributed by Nikhil Kumar` `// Singh(nickzuck_007)`

## Java

 `// Java program to calculate maximum width` `// of a binary tree using queue` `import` `java.util.LinkedList;` `import` `java.util.Queue;`   `public` `class` `maxwidthusingqueue ` `{` `    ``/* A binary tree node has data, pointer to` `       ``left child and a pointer to right child */` `    ``static` `class` `node ` `    ``{` `        ``int` `data;` `        ``node left, right;`   `        ``public` `node(``int` `data) { ``this``.data = data; }` `    ``}`   `    ``// Function to find the maximum width of` `    ``// the tree using level order traversal` `    ``static` `int` `maxwidth(node root)` `    ``{` `        ``// Base case` `        ``if` `(root == ``null``)` `            ``return` `0``;`   `        ``// Initialize result` `        ``int` `maxwidth = ``0``;`   `        ``// Do Level order traversal keeping` `        ``// track of number of nodes at every level` `        ``Queue q = ``new` `LinkedList<>();` `        ``q.add(root);` `        ``while` `(!q.isEmpty()) ` `        ``{` `            ``// Get the size of queue when the level order` `            ``// traversal for one level finishes` `            ``int` `count = q.size();`   `            ``// Update the maximum node count value` `            ``maxwidth = Math.max(maxwidth, count);`   `            ``// Iterate for all the nodes in` `            ``// the queue currently` `            ``while` `(count-- > ``0``) {` `                ``// Dequeue an node from queue` `                ``node temp = q.remove();`   `                ``// Enqueue left and right children` `                ``// of dequeued node` `                ``if` `(temp.left != ``null``)` `                ``{` `                    ``q.add(temp.left);` `                ``}` `                ``if` `(temp.right != ``null``)` `                ``{` `                    ``q.add(temp.right);` `                ``}` `            ``}` `        ``}` `        ``return` `maxwidth;` `    ``}` `  `  `    `  `    ``// Function call` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``node root = ``new` `node(``1``);` `        ``root.left = ``new` `node(``2``);` `        ``root.right = ``new` `node(``3``);` `        ``root.left.left = ``new` `node(``4``);` `        ``root.left.right = ``new` `node(``5``);` `        ``root.right.right = ``new` `node(``8``);` `        ``root.right.right.left = ``new` `node(``6``);` `        ``root.right.right.right = ``new` `node(``7``);`   `        ``/*   Constructed Binary tree is:` `        ``1` `      ``/   \` `    ``2      3` `  ``/  \      \` ` ``4    5      8` `           ``/   \` `          ``6     7    */`   `        ``// Function call` `        ``System.out.println(``"Maximum width = "` `                           ``+ maxwidth(root));` `    ``}` `}`   `// This code is contributed by Rishabh Mahrsee`

## Python3

 `# Python program to find the maximum width of binary` `# tree using Level Order Traversal with queue.`   `from` `_collections ``import` `deque`   `# A binary tree node` `class` `Node:`   `    ``# Constructor to create a new node` `    ``def` `__init__(``self``, data):` `        ``self``.data ``=` `data` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None`   `# Function to get the maximum width of a binary tree`     `def` `getMaxWidth(root):` `    ``# base case` `    ``if` `root ``is` `None``:` `        ``return` `0` `    ``q ``=` `deque()` `    ``maxWidth ``=` `0`   `    ``q.append(root)`   `    ``while` `q:` `        ``# Get the size of queue when the level order` `        ``# traversal for one level finishes` `        ``count ``=` `len``(q)`   `        ``# Update the maximum node count value` `        ``maxWidth ``=` `max``(count, maxWidth)`   `        ``while` `(count ``is` `not` `0``):` `            ``count ``=` `count``-``1` `            ``temp ``=` `q.popleft()` `            ``if` `temp.left ``is` `not` `None``:` `                ``q.append(temp.left)`   `            ``if` `temp.right ``is` `not` `None``:` `                ``q.append(temp.right)`   `    ``return` `maxWidth`     `# Driver program to test above function` `root ``=` `Node(``1``)` `root.left ``=` `Node(``2``)` `root.right ``=` `Node(``3``)` `root.left.left ``=` `Node(``4``)` `root.left.right ``=` `Node(``5``)` `root.right.right ``=` `Node(``8``)` `root.right.right.left ``=` `Node(``6``)` `root.right.right.right ``=` `Node(``7``)`   `"""` `Constructed binary tree is:` `       ``1` `      ``/ \` `     ``2   3` `    ``/ \    \` `   ``4   5   8 ` `          ``/ \` `         ``6   7` `"""` `# Function call` `print` `(``"Maximum width is %d"` `%` `(getMaxWidth(root)))`   `# This code is contributed by Naveen Aili`

## C#

 `// C# program to calculate maximum width` `// of a binary tree using queue` `using` `System;` `using` `System.Collections.Generic;`   `public` `class` `maxwidthusingqueue ` `{` `    ``/* A binary tree node has data, pointer to` `    ``left child and a pointer to right child */` `    ``public` `class` `node ` `    ``{` `        ``public` `int` `data;` `        ``public` `node left, right;`   `        ``public` `node(``int` `data) { ``this``.data = data; }` `    ``}`   `    ``// Function to find the maximum width of` `    ``// the tree using level order traversal` `    ``static` `int` `maxwidth(node root)` `    ``{` `        ``// Base case` `        ``if` `(root == ``null``)` `            ``return` `0;`   `        ``// Initialize result` `        ``int` `maxwidth = 0;`   `        ``// Do Level order traversal keeping` `        ``// track of number of nodes at every level` `        ``Queue q = ``new` `Queue();` `        ``q.Enqueue(root);` `        ``while` `(q.Count != 0) ` `        ``{` `            ``// Get the size of queue when the level order` `            ``// traversal for one level finishes` `            ``int` `count = q.Count;`   `            ``// Update the maximum node count value` `            ``maxwidth = Math.Max(maxwidth, count);`   `            ``// Iterate for all the nodes in` `            ``// the queue currently` `            ``while` `(count-- > 0) {` `                ``// Dequeue an node from queue` `                ``node temp = q.Dequeue();`   `                ``// Enqueue left and right children` `                ``// of dequeued node` `                ``if` `(temp.left != ``null``) ` `                ``{` `                    ``q.Enqueue(temp.left);` `                ``}` `                ``if` `(temp.right != ``null``) ` `                ``{` `                    ``q.Enqueue(temp.right);` `                ``}` `            ``}` `        ``}` `        ``return` `maxwidth;` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `Main(String[] args)` `    ``{` `        ``node root = ``new` `node(1);` `        ``root.left = ``new` `node(2);` `        ``root.right = ``new` `node(3);` `        ``root.left.left = ``new` `node(4);` `        ``root.left.right = ``new` `node(5);` `        ``root.right.right = ``new` `node(8);` `        ``root.right.right.left = ``new` `node(6);` `        ``root.right.right.right = ``new` `node(7);`   `        ``/* Constructed Binary tree is:` `        ``1` `      ``/   \` `     ``2     3` `    ``/ \     \` `    ``4 5     8` `           ``/ \` `           ``6 7 */`   `        ``Console.WriteLine(``"Maximum width = "` `                          ``+ maxwidth(root));` `    ``}` `}`   `// This code is contributed by Princi Singh`

## Javascript

 ``

Output

`Maximum width is 3`

Time Complexity: O(N) where N is the total number of nodes in the tree. Every node of the tree is processed once and hence the complexity is O(N).
Auxiliary Space: O(w) where w is the maximum width of the tree.

## Maximum width Using Preorder Traversal:

The idea behind this approach is to find the level of a node and increment the count of nodes for that level. The number of nodes present at a certain level is the width of that level.

For traversal we can here use the preorder traversal.

Follow the steps mentioned below to implement the approach:

• Create a temporary array count[] of size equal to the height of the tree.
• Initialize all values in count[] as 0
• Traverse the tree using preorder traversal and fill the entries in count[] so that
• The count[] array contains the count of nodes at each level of the Binary Tree.
• The level with the maximum number of nodes has the maximum width.
• Return the value of that level.

Below is the implementation of the above approach.

## C++

 `// C++ program to calculate width of binary tree` `#include ` `using` `namespace` `std;`   `/* A binary tree node has data, pointer to left child` `and a pointer to right child */` `class` `node {` `public``:` `    ``int` `data;` `    ``node* left;` `    ``node* right;` `    ``node(``int` `d)` `    ``{` `        ``this``->data = d;` `        ``this``->left = ``this``->right = NULL;` `    ``}` `};`   `// A utility function to get` `// height of a binary tree` `int` `height(node* node);`   `// A utility function that returns` `// maximum value in arr[] of size n` `int` `getMax(``int` `arr[], ``int` `n);`   `// A function that fills count array` `// with count of nodes at every` `// level of given binary tree` `void` `getMaxWidthRecur(node* root, ``int` `count[], ``int` `level);`   `/* Function to get the maximum` `width of a binary tree*/` `int` `getMaxWidth(node* root)` `{` `    ``int` `width;` `    ``int` `h = height(root);`   `    ``// Create an array that will` `    ``// store count of nodes at each level` `    ``int``* count = ``new` `int``[h];`   `    ``int` `level = 0;`   `    ``// Fill the count array using preorder traversal` `    ``getMaxWidthRecur(root, count, level);`   `    ``// Return the maximum value from count array` `    ``return` `getMax(count, h);` `}`   `// A function that fills count array` `// with count of nodes at every` `// level of given binary tree` `void` `getMaxWidthRecur(node* root, ` `                      ``int` `count[], ``int` `level)` `{` `    ``if` `(root) {` `        ``count[level]++;` `        ``getMaxWidthRecur(root->left, count, level + 1);` `        ``getMaxWidthRecur(root->right, count, level + 1);` `    ``}` `}`   `/* UTILITY FUNCTIONS */` `/* Compute the "height" of a tree -- the number of` `    ``nodes along the longest path from the root node` `    ``down to the farthest leaf node.*/` `int` `height(node* node)` `{` `    ``if` `(node == NULL)` `        ``return` `0;` `    ``else` `{` `        ``/* compute the height of each subtree */` `        ``int` `lHeight = height(node->left);` `        ``int` `rHeight = height(node->right);` `        ``/* use the larger one */`   `        ``return` `(lHeight > rHeight) ? (lHeight + 1)` `                                   ``: (rHeight + 1);` `    ``}` `}`   `// Return the maximum value from count array` `int` `getMax(``int` `arr[], ``int` `n)` `{` `    ``int` `max = arr;` `    ``int` `i;` `    ``for` `(i = 0; i < n; i++) {` `        ``if` `(arr[i] > max)` `            ``max = arr[i];` `    ``}` `    ``return` `max;` `}`   `/* Driver code*/` `int` `main()` `{` `    ``node* root = ``new` `node(1);` `    ``root->left = ``new` `node(2);` `    ``root->right = ``new` `node(3);` `    ``root->left->left = ``new` `node(4);` `    ``root->left->right = ``new` `node(5);` `    ``root->right->right = ``new` `node(8);` `    ``root->right->right->left = ``new` `node(6);` `    ``root->right->right->right = ``new` `node(7);`   `    ``cout << ``"Maximum width is "` `<< getMaxWidth(root)` `         ``<< endl;` `    ``return` `0;` `}`   `// This is code is contributed by rathbhupendra`

## C

 `// C program to calculate width of binary tree` `#include ` `#include `   `/* A binary tree node has data, pointer to left child` `   ``and a pointer to right child */` `struct` `node {` `    ``int` `data;` `    ``struct` `node* left;` `    ``struct` `node* right;` `};`   `// A utility function to get height of a binary tree` `int` `height(``struct` `node* node);`   `// A utility function to allocate a new node with given data` `struct` `node* newNode(``int` `data);`   `// A utility function that returns maximum value in arr[] of` `// size n` `int` `getMax(``int` `arr[], ``int` `n);`   `// A function that fills count array with count of nodes at` `// every level of given binary tree` `void` `getMaxWidthRecur(``struct` `node* root, ``int` `count[],` `                      ``int` `level);`   `/* Function to get the maximum width of a binary tree*/` `int` `getMaxWidth(``struct` `node* root)` `{` `    ``int` `width;` `    ``int` `h = height(root);`   `    ``// Create an array that will store count of nodes at` `    ``// each level` `    ``int``* count = (``int``*)``calloc``(``sizeof``(``int``), h);`   `    ``int` `level = 0;`   `    ``// Fill the count array using preorder traversal` `    ``getMaxWidthRecur(root, count, level);`   `    ``// Return the maximum value from count array` `    ``return` `getMax(count, h);` `}`   `// A function that fills count array with count of nodes at` `// every level of given binary tree` `void` `getMaxWidthRecur(``struct` `node* root, ``int` `count[],` `                      ``int` `level)` `{` `    ``if` `(root) {` `        ``count[level]++;` `        ``getMaxWidthRecur(root->left, count, level + 1);` `        ``getMaxWidthRecur(root->right, count, level + 1);` `    ``}` `}`   `/* UTILITY FUNCTIONS */` `/* Compute the "height" of a tree -- the number of` `    ``nodes along the longest path from the root node` `    ``down to the farthest leaf node.*/` `int` `height(``struct` `node* node)` `{` `    ``if` `(node == NULL)` `        ``return` `0;` `    ``else` `{` `        ``/* compute the height of each subtree */` `        ``int` `lHeight = height(node->left);` `        ``int` `rHeight = height(node->right);` `        ``/* use the larger one */`   `        ``return` `(lHeight > rHeight) ? (lHeight + 1)` `                                   ``: (rHeight + 1);` `    ``}` `}` `/* Helper function that allocates a new node with the` `   ``given data and NULL left and right pointers. */` `struct` `node* newNode(``int` `data)` `{` `    ``struct` `node* node` `        ``= (``struct` `node*)``malloc``(``sizeof``(``struct` `node));` `    ``node->data = data;` `    ``node->left = NULL;` `    ``node->right = NULL;` `    ``return` `(node);` `}`   `// Return the maximum value from count array` `int` `getMax(``int` `arr[], ``int` `n)` `{` `    ``int` `max = arr;` `    ``int` `i;` `    ``for` `(i = 0; i < n; i++) {` `        ``if` `(arr[i] > max)` `            ``max = arr[i];` `    ``}` `    ``return` `max;` `}`   `/* Driver program to test above functions*/` `int` `main()` `{` `    ``struct` `node* root = newNode(1);` `    ``root->left = newNode(2);` `    ``root->right = newNode(3);` `    ``root->left->left = newNode(4);` `    ``root->left->right = newNode(5);` `    ``root->right->right = newNode(8);` `    ``root->right->right->left = newNode(6);` `    ``root->right->right->right = newNode(7);`   `    ``/*` `     ``Constructed binary tree is:` `            ``1` `          ``/  \` `         ``2    3` `       ``/  \     \` `      ``4   5     8` `                ``/  \` `               ``6   7` `    ``*/` `    ``printf``(``"Maximum width is %d \n"``, getMaxWidth(root));` `    ``getchar``();` `    ``return` `0;` `}`

## Java

 `// Java program to calculate width of binary tree`   `/* A binary tree node has data, pointer to left child` `   ``and a pointer to right child */` `class` `Node {` `    ``int` `data;` `    ``Node left, right;`   `    ``Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}`   `class` `BinaryTree {` `    ``Node root;`   `    ``/* Function to get the maximum width of a binary tree*/` `    ``int` `getMaxWidth(Node node)` `    ``{` `        ``int` `width;` `        ``int` `h = height(node);`   `        ``// Create an array that will store count of nodes at` `        ``// each level` `        ``int` `count[] = ``new` `int``[``10``];`   `        ``int` `level = ``0``;`   `        ``// Fill the count array using preorder traversal` `        ``getMaxWidthRecur(node, count, level);`   `        ``// Return the maximum value from count array` `        ``return` `getMax(count, h);` `    ``}`   `    ``// A function that fills count array with count of nodes` `    ``// at every level of given binary tree` `    ``void` `getMaxWidthRecur(Node node, ``int` `count[], ``int` `level)` `    ``{` `        ``if` `(node != ``null``) {` `            ``count[level]++;` `            ``getMaxWidthRecur(node.left, count, level + ``1``);` `            ``getMaxWidthRecur(node.right, count, level + ``1``);` `        ``}` `    ``}`   `    ``/* UTILITY FUNCTIONS */`   `    ``/* Compute the "height" of a tree -- the number of` `     ``nodes along the longest path from the root node` `     ``down to the farthest leaf node.*/` `    ``int` `height(Node node)` `    ``{` `        ``if` `(node == ``null``)` `            ``return` `0``;` `        ``else` `{` `            ``/* compute the height of each subtree */` `            ``int` `lHeight = height(node.left);` `            ``int` `rHeight = height(node.right);`   `            ``/* use the larger one */` `            ``return` `(lHeight > rHeight) ? (lHeight + ``1``)` `                                       ``: (rHeight + ``1``);` `        ``}` `    ``}`   `    ``// Return the maximum value from count array` `    ``int` `getMax(``int` `arr[], ``int` `n)` `    ``{` `        ``int` `max = arr[``0``];` `        ``int` `i;` `        ``for` `(i = ``0``; i < n; i++) {` `            ``if` `(arr[i] > max)` `                ``max = arr[i];` `        ``}` `        ``return` `max;` `    ``}`   `    ``/* Driver program to test above functions */` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``BinaryTree tree = ``new` `BinaryTree();`   `        ``/*` `        ``Constructed binary tree is:` `              ``1` `            ``/  \` `           ``2    3` `          ``/ \    \` `         ``4   5    8` `                 ``/ \` `                ``6   7 */` `        ``tree.root = ``new` `Node(``1``);` `        ``tree.root.left = ``new` `Node(``2``);` `        ``tree.root.right = ``new` `Node(``3``);` `        ``tree.root.left.left = ``new` `Node(``4``);` `        ``tree.root.left.right = ``new` `Node(``5``);` `        ``tree.root.right.right = ``new` `Node(``8``);` `        ``tree.root.right.right.left = ``new` `Node(``6``);` `        ``tree.root.right.right.right = ``new` `Node(``7``);`   `        ``System.out.println(``"Maximum width is "` `                           ``+ tree.getMaxWidth(tree.root));` `    ``}` `}`   `// This code has been contributed by Mayank Jaiswal`

## Python3

 `# Python program to find the maximum width of ` `# binary tree using Preorder Traversal.`   `# A binary tree node`     `class` `Node:`   `    ``# Constructor to create a new node` `    ``def` `__init__(``self``, data):` `        ``self``.data ``=` `data` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None`   `# Function to get the maximum width of a binary tree`     `def` `getMaxWidth(root):` `    ``h ``=` `height(root)` `    ``# Create an array that will store count of nodes at each level` `    ``count ``=` `[``0``] ``*` `h`   `    ``level ``=` `0` `    ``# Fill the count array using preorder traversal` `    ``getMaxWidthRecur(root, count, level)`   `    ``# Return the maximum value from count array` `    ``return` `getMax(count, h)`   `# A function that fills count array with count of nodes at every` `# level of given binary tree`     `def` `getMaxWidthRecur(root, count, level):` `    ``if` `root ``is` `not` `None``:` `        ``count[level] ``+``=` `1` `        ``getMaxWidthRecur(root.left, count, level``+``1``)` `        ``getMaxWidthRecur(root.right, count, level``+``1``)`   `# UTILITY FUNCTIONS` `# Compute the "height" of a tree -- the number of` `# nodes along the longest path from the root node` `# down to the farthest leaf node.`     `def` `height(node):` `    ``if` `node ``is` `None``:` `        ``return` `0` `    ``else``:` `        ``# compute the height of each subtree` `        ``lHeight ``=` `height(node.left)` `        ``rHeight ``=` `height(node.right)` `        ``# use the larger one` `        ``return` `(lHeight``+``1``) ``if` `(lHeight > rHeight) ``else` `(rHeight``+``1``)`   `# Return the maximum value from count array`     `def` `getMax(count, n):` `    ``max` `=` `count[``0``]` `    ``for` `i ``in` `range``(``1``, n):` `        ``if` `(count[i] > ``max``):` `            ``max` `=` `count[i]` `    ``return` `max`     `# Driver program to test above function` `root ``=` `Node(``1``)` `root.left ``=` `Node(``2``)` `root.right ``=` `Node(``3``)` `root.left.left ``=` `Node(``4``)` `root.left.right ``=` `Node(``5``)` `root.right.right ``=` `Node(``8``)` `root.right.right.left ``=` `Node(``6``)` `root.right.right.right ``=` `Node(``7``)`   `"""` `Constructed binary tree is:` `       ``1` `      ``/ \` `     ``2   3` `    ``/ \   \` `   ``4   5   8 ` `          ``/ \` `         ``6   7` `"""`   `print` `(``"Maximum width is %d"` `%` `(getMaxWidth(root)))`   `# This code is contributed by Naveen Aili`

## C#

 `// C# program to calculate width of binary tree` `using` `System;`   `/* A binary tree node has data,` `pointer to left child and` `a pointer to right child */` `public` `class` `Node ` `{` `    ``public` `int` `data;` `    ``public` `Node left, right;`   `    ``public` `Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}`   `public` `class` `BinaryTree ` `{` `    ``Node root;`   `    ``/* Function to get the maximum` `    ``width of a binary tree*/` `    ``int` `getMaxWidth(Node node)` `    ``{` `        ``int` `width;` `        ``int` `h = height(node);`   `        ``// Create an array that will store` `        ``// count of nodes at each level` `        ``int``[] count = ``new` `int``;`   `        ``int` `level = 0;`   `        ``// Fill the count array using preorder traversal` `        ``getMaxWidthRecur(node, count, level);`   `        ``// Return the maximum value from count array` `        ``return` `getMax(count, h);` `    ``}`   `    ``// A function that fills count` `    ``// array with count of nodes at every` `    ``// level of given binary tree` `    ``void` `getMaxWidthRecur(Node node, ``int``[] count, ``int` `level)` `    ``{` `        ``if` `(node != ``null``) ` `        ``{` `            ``count[level]++;` `            ``getMaxWidthRecur(node.left, count, level + 1);` `            ``getMaxWidthRecur(node.right, count, level + 1);` `        ``}` `    ``}`   `    ``/* UTILITY FUNCTIONS */`   `    ``/* Compute the "height" of a tree -- the number of` `    ``nodes along the longest path from the root node` `    ``down to the farthest leaf node.*/` `    ``int` `height(Node node)` `    ``{` `        ``if` `(node == ``null``)` `            ``return` `0;` `        ``else` `        ``{` `            ``/* compute the height of each subtree */` `            ``int` `lHeight = height(node.left);` `            ``int` `rHeight = height(node.right);`   `            ``/* use the larger one */` `            ``return` `(lHeight > rHeight) ? (lHeight + 1)` `                                       ``: (rHeight + 1);` `        ``}` `    ``}`   `    ``// Return the maximum value from count array` `    ``int` `getMax(``int``[] arr, ``int` `n)` `    ``{` `        ``int` `max = arr;` `        ``int` `i;` `        ``for` `(i = 0; i < n; i++) ` `        ``{` `            ``if` `(arr[i] > max)` `                ``max = arr[i];` `        ``}` `        ``return` `max;` `    ``}`   `    ``/* Driver program to test above functions */` `    ``public` `static` `void` `Main(String[] args)` `    ``{` `        ``BinaryTree tree = ``new` `BinaryTree();` `        ``tree.root = ``new` `Node(1);` `        ``tree.root.left = ``new` `Node(2);` `        ``tree.root.right = ``new` `Node(3);` `        ``tree.root.left.left = ``new` `Node(4);` `        ``tree.root.left.right = ``new` `Node(5);` `        ``tree.root.right.right = ``new` `Node(8);` `        ``tree.root.right.right.left = ``new` `Node(6);` `        ``tree.root.right.right.right = ``new` `Node(7);`   `        ``Console.WriteLine(``"Maximum width is "` `                          ``+ tree.getMaxWidth(tree.root));` `    ``}` `}`   `// This code is contributed Rajput-Ji`

## Javascript

 ``

Output

`Maximum width is 3`

Time Complexity: O(N)
Auxiliary Space: O(h) where h is the height of the tree.

Thanks to Raja and Jagdish for suggesting this method.
Please write comments if you find the above code/algorithm incorrect, or find better ways to solve the same problem.

## Maximum width Using a Special form of level Order Traversal:

We will perform a special level order traversal with two loops where inner loops traverses the nodes of a single level. This is to ensure that we can do our calculations once a single level is traversed. In the traversal, we will assign an index to a node.

Below is the implementation of the above Approach:

## C++

 `#include `   `using` `namespace` `std;`   `struct` `node {` `  ``int` `data;` `  ``struct` `node * left, * right;` `};`   `int` `widthOfBinaryTree(node * root) {` `  ``if` `(!root)` `    ``return` `0;` `  ``int` `ans = 0;` `  ``queue < pair < node * , ``int` `>> q;` `  ``q.push({` `    ``root,` `    ``0` `  ``});` `  ``while` `(!q.empty()) {` `    ``int` `size = q.size();` `    ``int` `curMin = q.front().second;` `    ``int` `leftMost, rightMost;` `    ``for` `(``int` `i = 0; i < size; i++) {` `      ``int` `cur_id = q.front().second - curMin; ``// subtracted to prevent integer overflow` `      ``node * temp = q.front().first;` `      ``q.pop();` `      ``if` `(i == 0) leftMost = cur_id;` `      ``if` `(i == size - 1) rightMost = cur_id;` `      ``if` `(temp -> left)` `        ``q.push({` `          ``temp -> left,` `          ``cur_id * 2 + 1` `        ``});` `      ``if` `(temp -> right)` `        ``q.push({` `          ``temp -> right,` `          ``cur_id * 2 + 2` `        ``});` `    ``}` `    ``ans = max(ans, rightMost - leftMost + 1);` `  ``}` `  ``return` `ans;` `}`   `struct` `node * newNode(``int` `data) {` `  ``struct` `node * node = (``struct` `node * ) ``malloc``(``sizeof``(``struct` `node));` `  ``node -> data = data;` `  ``node -> left = NULL;` `  ``node -> right = NULL;`   `  ``return` `(node);` `}`   `int` `main() {`   `  ``struct` `node * root = newNode(1);` `  ``root -> left = newNode(3);` `  ``root -> left -> left = newNode(5);` `  ``root -> left -> left -> left = newNode(7);` `  ``root -> right = newNode(2);` `  ``root -> right -> right = newNode(4);` `  ``root -> right -> right -> right = newNode(6);`   `  ``int` `maxWidth = widthOfBinaryTree(root);` `  ``cout << ``"The maximum width of the Binary Tree is "` `<< maxWidth;` `  `  `  ``return` `0;` `}` `//This code is given by Kushagra Mishra.`

## Java

 `/*package whatever //do not write package name here */`   `import` `java.util.*;` `class` `TreeNode {` `  ``int` `data;` `  ``TreeNode  left,  right;` `  ``TreeNode(``int` `data)` `  ``{` `      ``this``.data=data;` `      ``left=``null``;` `      ``right=``null``;` `  ``}` `}`   `class` `Pair {` `    ``TreeNode node; ` `    ``int` `num; ` `    ``Pair(TreeNode _node, ``int` `_num) {` `        ``num = _num;` `        ``node = _node; ` `    ``}` `}` `class` `Solution {` `    ``public` `static` `int` `widthOfBinaryTree(TreeNode root) {` `        ``if``(root == ``null``) ``return` `0``;` `        ``int` `ans = ``0``;` `        ``Queue q = ``new` `LinkedList<>(); ` `        ``q.offer(``new` `Pair(root, ``0``)); ` `        ``while``(!q.isEmpty()){` `            ``int` `size = q.size();` `            ``int` `mmin = q.peek().num;    ``//to make the id starting from zero` `            ``int` `first = ``0``,last = ``0``;` `            ``for``(``int` `i=``0``; i

Output

`The maximum width of the Binary Tree is 8`

Time Complexity : O(N)
Space Complexity : O(N)

My Personal Notes arrow_drop_up