Maximum width of a Binary Tree
Given a binary tree, the task is to find the maximum width of the given tree. The width of a tree is the maximum of the widths of all levels. Before solving the problem first, let us understand what we have to do. Binary trees are one of the most common types of trees in computer science. They are also called “balanced” trees because all of their nodes have an equal number of children. In this case, we will focus on finding the maximum value of W, which is the width of a binary tree. For example, given a binary tree with root node A, which has two children B and C, where B has two children D and E and C has one child F, the maximum width is 3.
The maximum width of a binary tree is the number of nodes in the tree that have no children. In other words, it is the minimum number of nodes in a tree that can be traversed before you need to make a choice on which node to visit next.
Example:
Input:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
Output: 3
Explanation: For the above tree,
width of level 1 is 1,
width of level 2 is 2,
width of level 3 is 3
width of level 4 is 2.
So the maximum width of the tree is 3.
Maximum Width using Level Order Traversal:
To get the width of each level we can use the level order traversal. The maximum among the width of all levels is the required answer.
Level Order Traversal without queue:
This method mainly involves two functions:
- One is to count nodes at a given level (getWidth), and
- The other is to get the maximum width of the tree(getMaxWidth). getMaxWidth() makes use of getWidth() to get the width of all levels starting from the root.
Given below are the pseudo-codes for the mentioned functions.
getMaxWidth(tree)
maxWdth = 0
for i = 1 to height(tree)
width = getWidth(tree, i);
if(width > maxWdth)
maxWdth = width
return maxWidthgetWidth(tree, level)
if tree is NULL then return 0;
if level is 1, then return 1;
else if level greater than 1, then
return getWidth(tree->left, level-1) +
getWidth(tree->right, level-1);
Below is the implementation of the above idea:
C++
// C++ program to calculate width of binary tree #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ class node { public : int data; node* left; node* right; node ( int d){ this ->data = d; this ->left = this ->right = NULL; } }; /*Function prototypes*/ int getWidth(node* root, int level); int height(node* node); /* Function to get the maximum width of a binary tree*/ int getMaxWidth(node* root) { int maxWidth = 0; int width; int h = height(root); int i; /* Get width of each level and compare the width with maximum width so far */ for (i = 1; i <= h; i++) { width = getWidth(root, i); if (width > maxWidth) maxWidth = width; } return maxWidth; } /* Get width of a given level */ int getWidth(node* root, int level) { if (root == NULL) return 0; if (level == 1) return 1; else if (level > 1) return getWidth(root->left, level - 1) + getWidth(root->right, level - 1); } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height(node* node) { if (node == NULL) return 0; else { /* compute the height of each subtree */ int lHeight = height(node->left); int rHeight = height(node->right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } /* Driver code*/ int main() { node* root = new node(1); root->left = new node(2); root->right = new node(3); root->left->left = new node(4); root->left->right = new node(5); root->right->right = new node(8); root->right->right->left = new node(6); root->right->right->right = new node(7); /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ // Function call cout << "Maximum width is " << getMaxWidth(root) << endl; return 0; } // This code is contributed by rathbhupendra |
C
// C program to calculate width of binary tree #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; }; /*Function prototypes*/ int getWidth( struct node* root, int level); int height( struct node* node); struct node* newNode( int data); /* Function to get the maximum width of a binary tree*/ int getMaxWidth( struct node* root) { int maxWidth = 0; int width; int h = height(root); int i; /* Get width of each level and compare the width with maximum width so far */ for (i = 1; i <= h; i++) { width = getWidth(root, i); if (width > maxWidth) maxWidth = width; } return maxWidth; } /* Get width of a given level */ int getWidth( struct node* root, int level) { if (root == NULL) return 0; if (level == 1) return 1; else if (level > 1) return getWidth(root->left, level - 1) + getWidth(root->right, level - 1); } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height( struct node* node) { if (node == NULL) return 0; else { /* compute the height of each subtree */ int lHeight = height(node->left); int rHeight = height(node->right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode( int data) { struct node* node = ( struct node*) malloc ( sizeof ( struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } /* Driver code*/ int main() { struct node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(8); root->right->right->left = newNode(6); root->right->right->right = newNode(7); /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ // Function call printf ( "Maximum width is %d \n" , getMaxWidth(root)); getchar (); return 0; } |
Java
// Java program to calculate width of binary tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; /* Function to get the maximum width of a binary tree*/ int getMaxWidth(Node node) { int maxWidth = 0 ; int width; int h = height(node); int i; /* Get width of each level and compare the width with maximum width so far */ for (i = 1 ; i <= h; i++) { width = getWidth(node, i); if (width > maxWidth) maxWidth = width; } return maxWidth; } /* Get width of a given level */ int getWidth(Node node, int level) { if (node == null ) return 0 ; if (level == 1 ) return 1 ; else if (level > 1 ) return getWidth(node.left, level - 1 ) + getWidth(node.right, level - 1 ); return 0 ; } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height(Node node) { if (node == null ) return 0 ; else { /* compute the height of each subtree */ int lHeight = height(node.left); int rHeight = height(node.right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1 ) : (rHeight + 1 ); } } /* Driver code */ public static void main(String args[]) { BinaryTree tree = new BinaryTree(); /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.right = new Node( 8 ); tree.root.right.right.left = new Node( 6 ); tree.root.right.right.right = new Node( 7 ); // Function call System.out.println( "Maximum width is " + tree.getMaxWidth(tree.root)); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python program to find the maximum width of # binary tree using Level Order Traversal. # A binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # Function to get the maximum width of a binary tree def getMaxWidth(root): maxWidth = 0 h = height(root) # Get width of each level and compare the # width with maximum width so far for i in range ( 1 , h + 1 ): width = getWidth(root, i) if (width > maxWidth): maxWidth = width return maxWidth # Get width of a given level def getWidth(root, level): if root is None : return 0 if level = = 1 : return 1 elif level > 1 : return (getWidth(root.left, level - 1 ) + getWidth(root.right, level - 1 )) # UTILITY FUNCTIONS # Compute the "height" of a tree -- the number of # nodes along the longest path from the root node # down to the farthest leaf node. def height(node): if node is None : return 0 else : # compute the height of each subtree lHeight = height(node.left) rHeight = height(node.right) # use the larger one return (lHeight + 1 ) if (lHeight > rHeight) else (rHeight + 1 ) # Driver code root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) root.right.right = Node( 8 ) root.right.right.left = Node( 6 ) root.right.right.right = Node( 7 ) """ Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 """ # Function call print ( "Maximum width is %d" % (getMaxWidth(root))) # This code is contributed by Naveen Aili |
C#
// C# program to calculate width of binary tree using System; /* A binary tree node has data, pointer to left child and a pointer to right child */ public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } public class BinaryTree { public Node root; /* Function to get the maximum width of a binary tree*/ public virtual int getMaxWidth(Node node) { int maxWidth = 0; int width; int h = height(node); int i; /* Get width of each level and compare the width with maximum width so far */ for (i = 1; i <= h; i++) { width = getWidth(node, i); if (width > maxWidth) { maxWidth = width; } } return maxWidth; } /* Get width of a given level */ public virtual int getWidth(Node node, int level) { if (node == null ) { return 0; } if (level == 1) { return 1; } else if (level > 1) { return getWidth(node.left, level - 1) + getWidth(node.right, level - 1); } return 0; } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ public virtual int height(Node node) { if (node == null ) { return 0; } else { /* compute the height of each subtree */ int lHeight = height(node.left); int rHeight = height(node.right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } /* Driver code */ public static void Main( string [] args) { BinaryTree tree = new BinaryTree(); /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.right = new Node(8); tree.root.right.right.left = new Node(6); tree.root.right.right.right = new Node(7); // Function call Console.WriteLine( "Maximum width is " + tree.getMaxWidth(tree.root)); } } // This code is contributed by Shrikant13 |
Javascript
<script> // JavaScript program to calculate width of binary tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { constructor(val) { this .data = val; this .left = null ; this .right = null ; } } var root; /* Function to get the maximum width of a binary tree*/ function getMaxWidth(node) { var maxWidth = 0; var width; var h = height(node); var i; /* Get width of each level and compare the width with maximum width so far */ for (i = 1; i <= h; i++) { width = getWidth(node, i); if (width > maxWidth) maxWidth = width; } return maxWidth; } /* Get width of a given level */ function getWidth(node , level) { if (node == null ) return 0; if (level == 1) return 1; else if (level > 1) return getWidth(node.left, level - 1) + getWidth(node.right, level - 1); return 0; } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ function height(node) { if (node == null ) return 0; else { /* compute the height of each subtree */ var lHeight = height(node.left); var rHeight = height(node.right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } /* Driver code */ /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(8); root.right.right.left = new Node(6); root.right.right.right = new Node(7); // Function call document.write( "Maximum width is " + getMaxWidth(root)); // This code is contributed by todaysgaurav </script> |
Maximum width is 3
Time Complexity: O(N2) in the worst case.
Auxiliary Space: O(1)
We can use Queue-based level order traversal to optimize the time complexity of this method. The Queue-based level order traversal will take O(N) time in the worst case. Thanks to Nitish, DivyaC, and tech.login.id2 for suggesting this optimization.
Level Order Traversal using Queue
When a queue is used, we can count all the nodes in a level in constant time. This reduces the complexity to be a linear one.
In this method do the following:
- Store all the child nodes at the current level in the queue.
- Count the total number of nodes after the level order traversal for a particular level is completed.
- Since the queue now contains all the nodes of the next level, we can easily find out the total number of nodes in the next level by finding the size of the queue.
- Follow the same procedure for the successive levels.
- Store and update the maximum number of nodes found at each level.
Below is the implementation of the above approach.
C++
// A queue based C++ program to find maximum width // of a Binary Tree #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node* left; struct Node* right; Node( int d) { this ->data = d; this ->left = this ->right = NULL; } }; // Function to find the maximum width of the tree // using level order traversal int maxWidth( struct Node* root) { // Base case if (root == NULL) return 0; // Initialize result int result = 0; // Do Level order traversal keeping track of number // of nodes at every level. queue<Node*> q; q.push(root); while (!q.empty()) { // Get the size of queue when the level order // traversal for one level finishes int count = q.size(); // Update the maximum node count value result = max(count, result); // Iterate for all the nodes in the queue currently while (count--) { // Dequeue an node from queue Node* temp = q.front(); q.pop(); // Enqueue left and right children of // dequeued node if (temp->left != NULL) q.push(temp->left); if (temp->right != NULL) q.push(temp->right); } } return result; } // Driver code int main() { struct Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); root->right->right = new Node(8); root->right->right->left = new Node(6); root->right->right->right = new Node(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ // Function call cout << "Maximum width is " << maxWidth(root) << endl; return 0; } // This code is contributed by Nikhil Kumar // Singh(nickzuck_007) |
Java
// Java program to calculate maximum width // of a binary tree using queue import java.util.LinkedList; import java.util.Queue; public class maxwidthusingqueue { /* A binary tree node has data, pointer to left child and a pointer to right child */ static class node { int data; node left, right; public node( int data) { this .data = data; } } // Function to find the maximum width of // the tree using level order traversal static int maxwidth(node root) { // Base case if (root == null ) return 0 ; // Initialize result int maxwidth = 0 ; // Do Level order traversal keeping // track of number of nodes at every level Queue<node> q = new LinkedList<>(); q.add(root); while (!q.isEmpty()) { // Get the size of queue when the level order // traversal for one level finishes int count = q.size(); // Update the maximum node count value maxwidth = Math.max(maxwidth, count); // Iterate for all the nodes in // the queue currently while (count-- > 0 ) { // Dequeue an node from queue node temp = q.remove(); // Enqueue left and right children // of dequeued node if (temp.left != null ) { q.add(temp.left); } if (temp.right != null ) { q.add(temp.right); } } } return maxwidth; } // Function call public static void main(String[] args) { node root = new node( 1 ); root.left = new node( 2 ); root.right = new node( 3 ); root.left.left = new node( 4 ); root.left.right = new node( 5 ); root.right.right = new node( 8 ); root.right.right.left = new node( 6 ); root.right.right.right = new node( 7 ); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ // Function call System.out.println( "Maximum width = " + maxwidth(root)); } } // This code is contributed by Rishabh Mahrsee |
Python3
# Python program to find the maximum width of binary # tree using Level Order Traversal with queue. from _collections import deque # A binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # Function to get the maximum width of a binary tree def getMaxWidth(root): # base case if root is None : return 0 q = deque() maxWidth = 0 q.append(root) while q: # Get the size of queue when the level order # traversal for one level finishes count = len (q) # Update the maximum node count value maxWidth = max (count, maxWidth) while (count is not 0 ): count = count - 1 temp = q.popleft() if temp.left is not None : q.append(temp.left) if temp.right is not None : q.append(temp.right) return maxWidth # Driver program to test above function root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) root.right.right = Node( 8 ) root.right.right.left = Node( 6 ) root.right.right.right = Node( 7 ) """ Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 """ # Function call print ( "Maximum width is %d" % (getMaxWidth(root))) # This code is contributed by Naveen Aili |
C#
// C# program to calculate maximum width // of a binary tree using queue using System; using System.Collections.Generic; public class maxwidthusingqueue { /* A binary tree node has data, pointer to left child and a pointer to right child */ public class node { public int data; public node left, right; public node( int data) { this .data = data; } } // Function to find the maximum width of // the tree using level order traversal static int maxwidth(node root) { // Base case if (root == null ) return 0; // Initialize result int maxwidth = 0; // Do Level order traversal keeping // track of number of nodes at every level Queue<node> q = new Queue<node>(); q.Enqueue(root); while (q.Count != 0) { // Get the size of queue when the level order // traversal for one level finishes int count = q.Count; // Update the maximum node count value maxwidth = Math.Max(maxwidth, count); // Iterate for all the nodes in // the queue currently while (count-- > 0) { // Dequeue an node from queue node temp = q.Dequeue(); // Enqueue left and right children // of dequeued node if (temp.left != null ) { q.Enqueue(temp.left); } if (temp.right != null ) { q.Enqueue(temp.right); } } } return maxwidth; } // Driver code public static void Main(String[] args) { node root = new node(1); root.left = new node(2); root.right = new node(3); root.left.left = new node(4); root.left.right = new node(5); root.right.right = new node(8); root.right.right.left = new node(6); root.right.right.right = new node(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ Console.WriteLine( "Maximum width = " + maxwidth(root)); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program to calculate maximum width // of a binary tree using queue class node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Function to find the maximum width of // the tree using level order traversal function maxwidth(root) { // Base case if (root == null ) return 0; // Initialize result let maxwidth = 0; // Do Level order traversal keeping // track of number of nodes at every level let q = []; q.push(root); while (q.length > 0) { // Get the size of queue when the level order // traversal for one level finishes let count = q.length; // Update the maximum node count value maxwidth = Math.max(maxwidth, count); // Iterate for all the nodes in // the queue currently while (count-- > 0) { // Dequeue an node from queue let temp = q.shift(); // Enqueue left and right children // of dequeued node if (temp.left != null ) { q.push(temp.left); } if (temp.right != null ) { q.push(temp.right); } } } return maxwidth; } let root = new node(1); root.left = new node(2); root.right = new node(3); root.left.left = new node(4); root.left.right = new node(5); root.right.right = new node(8); root.right.right.left = new node(6); root.right.right.right = new node(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ // Function call document.write( "Maximum width is " + maxwidth(root)); </script> |
Maximum width is 3
Time Complexity: O(N) where N is the total number of nodes in the tree. Every node of the tree is processed once and hence the complexity is O(N).
Auxiliary Space: O(w) where w is the maximum width of the tree.
Maximum width Using Preorder Traversal:
The idea behind this approach is to find the level of a node and increment the count of nodes for that level. The number of nodes present at a certain level is the width of that level.
For traversal we can here use the preorder traversal.
Follow the steps mentioned below to implement the approach:
- Create a temporary array count[] of size equal to the height of the tree.
- Initialize all values in count[] as 0.
- Traverse the tree using preorder traversal and fill the entries in count[] so that
- The count[] array contains the count of nodes at each level of the Binary Tree.
- The level with the maximum number of nodes has the maximum width.
- Return the value of that level.
Below is the implementation of the above approach.
C++
// C++ program to calculate width of binary tree #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ class node { public : int data; node* left; node* right; node( int d) { this ->data = d; this ->left = this ->right = NULL; } }; // A utility function to get // height of a binary tree int height(node* node); // A utility function that returns // maximum value in arr[] of size n int getMax( int arr[], int n); // A function that fills count array // with count of nodes at every // level of given binary tree void getMaxWidthRecur(node* root, int count[], int level); /* Function to get the maximum width of a binary tree*/ int getMaxWidth(node* root) { int width; int h = height(root); // Create an array that will // store count of nodes at each level int * count = new int [h]; int level = 0; // Fill the count array using preorder traversal getMaxWidthRecur(root, count, level); // Return the maximum value from count array return getMax(count, h); } // A function that fills count array // with count of nodes at every // level of given binary tree void getMaxWidthRecur(node* root, int count[], int level) { if (root) { count[level]++; getMaxWidthRecur(root->left, count, level + 1); getMaxWidthRecur(root->right, count, level + 1); } } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height(node* node) { if (node == NULL) return 0; else { /* compute the height of each subtree */ int lHeight = height(node->left); int rHeight = height(node->right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } // Return the maximum value from count array int getMax( int arr[], int n) { int max = arr[0]; int i; for (i = 0; i < n; i++) { if (arr[i] > max) max = arr[i]; } return max; } /* Driver code*/ int main() { node* root = new node(1); root->left = new node(2); root->right = new node(3); root->left->left = new node(4); root->left->right = new node(5); root->right->right = new node(8); root->right->right->left = new node(6); root->right->right->right = new node(7); cout << "Maximum width is " << getMaxWidth(root) << endl; return 0; } // This is code is contributed by rathbhupendra |
C
// C program to calculate width of binary tree #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; }; // A utility function to get height of a binary tree int height( struct node* node); // A utility function to allocate a new node with given data struct node* newNode( int data); // A utility function that returns maximum value in arr[] of // size n int getMax( int arr[], int n); // A function that fills count array with count of nodes at // every level of given binary tree void getMaxWidthRecur( struct node* root, int count[], int level); /* Function to get the maximum width of a binary tree*/ int getMaxWidth( struct node* root) { int width; int h = height(root); // Create an array that will store count of nodes at // each level int * count = ( int *) calloc ( sizeof ( int ), h); int level = 0; // Fill the count array using preorder traversal getMaxWidthRecur(root, count, level); // Return the maximum value from count array return getMax(count, h); } // A function that fills count array with count of nodes at // every level of given binary tree void getMaxWidthRecur( struct node* root, int count[], int level) { if (root) { count[level]++; getMaxWidthRecur(root->left, count, level + 1); getMaxWidthRecur(root->right, count, level + 1); } } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height( struct node* node) { if (node == NULL) return 0; else { /* compute the height of each subtree */ int lHeight = height(node->left); int rHeight = height(node->right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode( int data) { struct node* node = ( struct node*) malloc ( sizeof ( struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } // Return the maximum value from count array int getMax( int arr[], int n) { int max = arr[0]; int i; for (i = 0; i < n; i++) { if (arr[i] > max) max = arr[i]; } return max; } /* Driver program to test above functions*/ int main() { struct node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(8); root->right->right->left = newNode(6); root->right->right->right = newNode(7); /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ printf ( "Maximum width is %d \n" , getMaxWidth(root)); getchar (); return 0; } |
Java
// Java program to calculate width of binary tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; /* Function to get the maximum width of a binary tree*/ int getMaxWidth(Node node) { int width; int h = height(node); // Create an array that will store count of nodes at // each level int count[] = new int [ 10 ]; int level = 0 ; // Fill the count array using preorder traversal getMaxWidthRecur(node, count, level); // Return the maximum value from count array return getMax(count, h); } // A function that fills count array with count of nodes // at every level of given binary tree void getMaxWidthRecur(Node node, int count[], int level) { if (node != null ) { count[level]++; getMaxWidthRecur(node.left, count, level + 1 ); getMaxWidthRecur(node.right, count, level + 1 ); } } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height(Node node) { if (node == null ) return 0 ; else { /* compute the height of each subtree */ int lHeight = height(node.left); int rHeight = height(node.right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1 ) : (rHeight + 1 ); } } // Return the maximum value from count array int getMax( int arr[], int n) { int max = arr[ 0 ]; int i; for (i = 0 ; i < n; i++) { if (arr[i] > max) max = arr[i]; } return max; } /* Driver program to test above functions */ public static void main(String args[]) { BinaryTree tree = new BinaryTree(); /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.right = new Node( 8 ); tree.root.right.right.left = new Node( 6 ); tree.root.right.right.right = new Node( 7 ); System.out.println( "Maximum width is " + tree.getMaxWidth(tree.root)); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python program to find the maximum width of # binary tree using Preorder Traversal. # A binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # Function to get the maximum width of a binary tree def getMaxWidth(root): h = height(root) # Create an array that will store count of nodes at each level count = [ 0 ] * h level = 0 # Fill the count array using preorder traversal getMaxWidthRecur(root, count, level) # Return the maximum value from count array return getMax(count, h) # A function that fills count array with count of nodes at every # level of given binary tree def getMaxWidthRecur(root, count, level): if root is not None : count[level] + = 1 getMaxWidthRecur(root.left, count, level + 1 ) getMaxWidthRecur(root.right, count, level + 1 ) # UTILITY FUNCTIONS # Compute the "height" of a tree -- the number of # nodes along the longest path from the root node # down to the farthest leaf node. def height(node): if node is None : return 0 else : # compute the height of each subtree lHeight = height(node.left) rHeight = height(node.right) # use the larger one return (lHeight + 1 ) if (lHeight > rHeight) else (rHeight + 1 ) # Return the maximum value from count array def getMax(count, n): max = count[ 0 ] for i in range ( 1 , n): if (count[i] > max ): max = count[i] return max # Driver program to test above function root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) root.right.right = Node( 8 ) root.right.right.left = Node( 6 ) root.right.right.right = Node( 7 ) """ Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 """ print ( "Maximum width is %d" % (getMaxWidth(root))) # This code is contributed by Naveen Aili |
C#
// C# program to calculate width of binary tree using System; /* A binary tree node has data, pointer to left child and a pointer to right child */ public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } public class BinaryTree { Node root; /* Function to get the maximum width of a binary tree*/ int getMaxWidth(Node node) { int width; int h = height(node); // Create an array that will store // count of nodes at each level int [] count = new int [10]; int level = 0; // Fill the count array using preorder traversal getMaxWidthRecur(node, count, level); // Return the maximum value from count array return getMax(count, h); } // A function that fills count // array with count of nodes at every // level of given binary tree void getMaxWidthRecur(Node node, int [] count, int level) { if (node != null ) { count[level]++; getMaxWidthRecur(node.left, count, level + 1); getMaxWidthRecur(node.right, count, level + 1); } } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes along the longest path from the root node down to the farthest leaf node.*/ int height(Node node) { if (node == null ) return 0; else { /* compute the height of each subtree */ int lHeight = height(node.left); int rHeight = height(node.right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } // Return the maximum value from count array int getMax( int [] arr, int n) { int max = arr[0]; int i; for (i = 0; i < n; i++) { if (arr[i] > max) max = arr[i]; } return max; } /* Driver program to test above functions */ public static void Main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.right = new Node(8); tree.root.right.right.left = new Node(6); tree.root.right.right.right = new Node(7); Console.WriteLine( "Maximum width is " + tree.getMaxWidth(tree.root)); } } // This code is contributed Rajput-Ji |
Javascript
<script> // javascript program to calculate width of binary tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { constructor(val) { this .data = val; this .left = null ; this .right = null ; } } var root; /* Function to get the maximum width of a binary tree*/ function getMaxWidth(node) { var width; var h = height(node); // Create an array that will store count of nodes at // each level var count = Array(10).fill(0); var level = 0; // Fill the count array using preorder traversal getMaxWidthRecur(node, count, level); // Return the maximum value from count array return getMax(count, h); } // A function that fills count array with count of nodes // at every level of given binary tree function getMaxWidthRecur(node , count , level) { if (node != null ) { count[level]++; getMaxWidthRecur(node.left, count, level + 1); getMaxWidthRecur(node.right, count, level + 1); } } /* UTILITY FUNCTIONS */ /* Compute the "height" of a tree -- the number of nodes avar the longest path from the root node down to the farthest leaf node.*/ function height(node) { if (node == null ) return 0; else { /* compute the height of each subtree */ var lHeight = height(node.left); var rHeight = height(node.right); /* use the larger one */ return (lHeight > rHeight) ? (lHeight + 1) : (rHeight + 1); } } // Return the maximum value from count array function getMax(arr , n) { var max = arr[0]; var i; for (i = 0; i < n; i++) { if (arr[i] > max) max = arr[i]; } return max; } /* Driver program to test above functions */ /* Constructed binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(8); root.right.right.left = new Node(6); root.right.right.right = new Node(7); document.write( "Maximum width is " + getMaxWidth(root)); // This code is contributed by Rajput-Ji </script> |
Maximum width is 3
Time Complexity: O(N)
Auxiliary Space: O(h) where h is the height of the tree.
Thanks to Raja and Jagdish for suggesting this method.
Please write comments if you find the above code/algorithm incorrect, or find better ways to solve the same problem.
Maximum width Using a Special form of level Order Traversal:
We will perform a special level order traversal with two loops where inner loops traverses the nodes of a single level. This is to ensure that we can do our calculations once a single level is traversed. In the traversal, we will assign an index to a node.
Below is the implementation of the above Approach:
C++
#include <bits/stdc++.h> using namespace std; struct node { int data; struct node * left, * right; }; int widthOfBinaryTree(node * root) { if (!root) return 0; int ans = 0; queue < pair < node * , int >> q; q.push({ root, 0 }); while (!q.empty()) { int size = q.size(); int curMin = q.front().second; int leftMost, rightMost; for ( int i = 0; i < size; i++) { int cur_id = q.front().second - curMin; // subtracted to prevent integer overflow node * temp = q.front().first; q.pop(); if (i == 0) leftMost = cur_id; if (i == size - 1) rightMost = cur_id; if (temp -> left) q.push({ temp -> left, cur_id * 2 + 1 }); if (temp -> right) q.push({ temp -> right, cur_id * 2 + 2 }); } ans = max(ans, rightMost - leftMost + 1); } return ans; } struct node * newNode( int data) { struct node * node = ( struct node * ) malloc ( sizeof ( struct node)); node -> data = data; node -> left = NULL; node -> right = NULL; return (node); } int main() { struct node * root = newNode(1); root -> left = newNode(3); root -> left -> left = newNode(5); root -> left -> left -> left = newNode(7); root -> right = newNode(2); root -> right -> right = newNode(4); root -> right -> right -> right = newNode(6); int maxWidth = widthOfBinaryTree(root); cout << "The maximum width of the Binary Tree is " << maxWidth; return 0; } //This code is given by Kushagra Mishra. |
Java
/*package whatever //do not write package name here */ import java.util.*; class TreeNode { int data; TreeNode left, right; TreeNode( int data) { this .data=data; left= null ; right= null ; } } class Pair { TreeNode node; int num; Pair(TreeNode _node, int _num) { num = _num; node = _node; } } class Solution { public static int widthOfBinaryTree(TreeNode root) { if (root == null ) return 0 ; int ans = 0 ; Queue<Pair> q = new LinkedList<>(); q.offer( new Pair(root, 0 )); while (!q.isEmpty()){ int size = q.size(); int mmin = q.peek().num; //to make the id starting from zero int first = 0 ,last = 0 ; for ( int i= 0 ; i<size; i++){ int cur_id = q.peek().num-mmin; TreeNode node = q.peek().node; q.poll(); if (i== 0 ) first = cur_id; if (i==size- 1 ) last = cur_id; if (node.left != null ) q.offer( new Pair(node.left, cur_id* 2 + 1 )); if (node.right != null ) q.offer( new Pair(node.right, cur_id* 2 + 2 )); } ans = Math.max(ans, last-first+ 1 ); } return ans; } public static void main(String args[]) { TreeNode root = new TreeNode( 1 ); root . left = new TreeNode( 3 ); root . left . left = new TreeNode( 5 ); root . left . left . left = new TreeNode( 7 ); root . right = new TreeNode( 2 ); root . right . right = new TreeNode( 4 ); root . right . right . right = new TreeNode( 6 ); int maxWidth = widthOfBinaryTree(root); System.out.println( "The maximum width of the Binary Tree is " +maxWidth); //This code is given by Kushagra Mishra. } } |
The maximum width of the Binary Tree is 8
Time Complexity : O(N)
Space Complexity : O(N)
Please Login to comment...