Maximum water that can be stored between two buildings
Given an integer array that represents the heights of N buildings. The task is to delete N – 2 buildings such that the water that can be trapped between the remaining two buildings is maximum. The total water trapped between two buildings is a gap between them (the number of buildings removed) multiplied by the height of the smaller building.
Examples:
Input: arr[] = {1, 3, 4}
Output: 1
Explanation: We have to calculate the maximum water that can be stored between any 2 buildings.
Water between the buildings of height 1 and height 3 = 0.
Water between the buildings of height 1 and height 4 = 1.
Water between the buildings of height 3 and height 4 = 0.
Hence maximum of all the cases is 1.Input: arr[] = {2, 1, 3, 4, 6, 5}
Output: 8
We remove the middle 4 buildings and get the total water stored as 2 * 4 = 8
Naive approach:
Check for all possible pairs and the pair which can hold maximum water will be the answer. Water stored between two buildings of heights h1 and h2 would be equal to minimum(h1, h2)*(distance between the buildings – 1), maximize this value to get the answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Return the maximum water that can be stored int maxWater( int height[], int n) { int maximum = 0; // Check all possible pairs of buildings for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { int current = (min(height[i], height[j]) * (j - i - 1)); // Maximum so far maximum = max(maximum, current); } } return maximum; } // Driver code int main() { int height[] = { 2, 1, 3, 4, 6, 5 }; int n = sizeof (height) / sizeof (height[0]); cout << maxWater(height, n); return 0; } |
Java
// Java implementation of the above approach class GFG { // Return the maximum water that can be stored static int maxWater( int height[], int n) { int max = 0 ; // Check all possible pairs of buildings for ( int i = 0 ; i < n - 1 ; i++) { for ( int j = i + 1 ; j < n; j++) { int current = (Math.min(height[i], height[j]) * (j - i - 1 )); // Maximum so far max = Math.max(max, current); } } return max; } // Driver code public static void main(String[] args) { int height[] = { 2 , 1 , 3 , 4 , 6 , 5 }; int n = height.length; System.out.print(maxWater(height, n)); } } |
Python3
# Python3 implementation of the above approach # Return the maximum water # that can be stored def maxWater(height, n): maximum = 0 # Check all possible pairs of buildings for i in range (n - 1 ): for j in range (i + 1 , n): current = min (height[i], height[j]) * (j - i - 1 ) # Maximum so far maximum = max (maximum, current) return maximum # Driver code if __name__ = = "__main__" : height = [ 2 , 1 , 3 , 4 , 6 , 5 ] n = len (height) print (maxWater(height, n)) |
C#
// C# implementation of the above approach using System; class GFG { // Return the maximum water that can be stored static int maxWater( int [] height, int n) { int max = 0; // Check all possible pairs of buildings for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { int current = (Math.Min(height[i], height[j]) * (j - i - 1)); // Maximum so far max = Math.Max(max, current); } } return max; } // Driver code static public void Main() { int [] height = { 2, 1, 3, 4, 6, 5 }; int n = height.Length; Console.WriteLine(maxWater(height, n)); } } |
Javascript
<script> // Javascript implementation of the above approach // Return the maximum water that can be stored function maxWater( height, n) { let maximum = 0; // Check all possible pairs of buildings for (let i = 0; i < n - 1; i++) { for (let j = i + 1; j < n; j++) { let current = (Math.min(height[i], height[j]) * (j - i - 1)); // Maximum so far maximum = Math.max(maximum, current); } } return maximum; } // Driver program let height = [ 2, 1, 3, 4, 6, 5 ]; let n = height.length; document.write(maxWater(height, n)); </script> |
8
Time Complexity: O(N*N)
Auxiliary Space: O(1)
Maximum water that can be stored between two buildings using sorting
Efficient approach:
Sort the array according to increasing height without affecting the original indices i.e. make pairs of (element, index). Then for every element, assume it is the building with the minimum height among the two buildings required then the height of the required water will be equal to the height of the chosen building and the width will be equal to the index difference between the chosen building and the building to be found.
In order to choose the other building which maximizes the water, the other building has to be as far as possible and must be greater in height as compared to the currently chosen building.
Now, the problem gets reduced to finding the minimum and maximum indices on the right for every building in the sorted array.
Follow the steps below to implement the idea:
- Create an array of pairs pairs[] of size N with each pair of the type (i, arr[i]) and sort pairs[] in increasing order of second element of pair.
- Initialize minIndSoFar = pairs[n – 1].first and maxIndSoFar = pairs[n – 1].first as this would be the index of largest buildings on either sides of i and a variable maxi that will store the value of maximum water that can be stored.
- Run a for loop with counter i from N – 2 to 0
- Calculate the water that can be filled between the building on index i and minIndSoFar as ith building will be of same of less height than the building on minIndSoFar, so left = (pairs[i].second * (pairs[i].first – minIndSoFar – 1)).
- Calculate the water that can be filled between the building on index i and maxIndSoFar as ith building will be of same of less height than the building on maxIndSoFar, so right = (pairs[i].second *(maxIndSoFar – pairs[i].first – 1)).
- Now maximize maxi with max of left, right and maxi, update maxIndSoFar with max of maxIndSoFar and i, and minIndSoFar with min of maxIndSoFar and i.
- Return maxi.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; bool compareTo(pair< int , int > p1, pair< int , int > p2) { return p1.second < p2.second; } // Return the maximum water that // can be stored int maxWater( int height[], int n) { // Make pairs with indices pair< int , int > pairs[n]; for ( int i = 0; i < n; i++) pairs[i] = make_pair(i, height[i]); // Sort array based on heights sort(pairs, pairs + n, compareTo); // To store the min and max index so far // from the right int minIndSoFar = pairs[n - 1].first; int maxIndSoFar = pairs[n - 1].first; int maxi = 0; for ( int i = n - 2; i >= 0; i--) { // Current building paired with // the building greater in height // and on the extreme left int left = 0; if (minIndSoFar < pairs[i].first) { left = (pairs[i].second * (pairs[i].first - minIndSoFar - 1)); } // Current building paired with // the building greater in height // and on the extreme right int right = 0; if (maxIndSoFar > pairs[i].first) { right = (pairs[i].second * (maxIndSoFar - pairs[i].first - 1)); } // Maximum so far maxi = max(left, max(right, maxi)); // Update the maximum and minimum so far minIndSoFar = min(minIndSoFar, pairs[i].first); maxIndSoFar = max(maxIndSoFar, pairs[i].first); } return maxi; } // Driver code int main() { int height[] = { 2, 1, 3, 4, 6, 5 }; int n = sizeof (height) / sizeof (height[0]); cout << maxWater(height, n); } |
Java
// Java implementation of the above approach import java.util.Arrays; // Class to store the pairs class Pair implements Comparable<Pair> { int ind, val; Pair( int ind, int val) { this .ind = ind; this .val = val; } @Override public int compareTo(Pair o) { if ( this .val > o.val) return 1 ; return - 1 ; } } class GFG { // Return the maximum water that can be stored static int maxWater( int height[], int n) { // Make pairs with indices Pair pairs[] = new Pair[n]; for ( int i = 0 ; i < n; i++) pairs[i] = new Pair(i, height[i]); // Sort array based on heights Arrays.sort(pairs); // To store the min and max index so far // from the right int minIndSoFar = pairs[n - 1 ].ind; int maxIndSoFar = pairs[n - 1 ].ind; int max = 0 ; for ( int i = n - 2 ; i >= 0 ; i--) { // Current building paired with the building // greater in height and on the extreme left int left = 0 ; if (minIndSoFar < pairs[i].ind) { left = (pairs[i].val * (pairs[i].ind - minIndSoFar - 1 )); } // Current building paired with the building // greater in height and on the extreme right int right = 0 ; if (maxIndSoFar > pairs[i].ind) { right = (pairs[i].val * (maxIndSoFar - pairs[i].ind - 1 )); } // Maximum so far max = Math.max(left, Math.max(right, max)); // Update the maximum and minimum so far minIndSoFar = Math.min(minIndSoFar, pairs[i].ind); maxIndSoFar = Math.max(maxIndSoFar, pairs[i].ind); } return max; } // Driver code public static void main(String[] args) { int height[] = { 2 , 1 , 3 , 4 , 6 , 5 }; int n = height.length; System.out.print(maxWater(height, n)); } } |
Python3
# Python3 implementation of the above approach from functools import cmp_to_key def compareTo(p1, p2): return p1[ 1 ] - p2[ 1 ] # Return the maximum water that # can be stored def maxWater(height, n): # Make pairs with indices pairs = [ 0 for i in range (n)] for i in range (n): pairs[i] = [i, height[i]] # Sort array based on heights pairs.sort(key = cmp_to_key(compareTo)) # To store the min and max index so far # from the right minIndSoFar = pairs[n - 1 ][ 0 ] maxIndSoFar = pairs[n - 1 ][ 0 ] maxi = 0 for i in range (n - 2 , - 1 , - 1 ): # Current building paired with # the building greater in height # and on the extreme left left = 0 if (minIndSoFar < pairs[i][ 0 ]): left = (pairs[i][ 1 ] * (pairs[i][ 0 ] - minIndSoFar - 1 )) # Current building paired with # the building greater in height # and on the extreme right right = 0 if (maxIndSoFar > pairs[i][ 0 ]): right = (pairs[i][ 1 ] * (maxIndSoFar - pairs[i][ 0 ] - 1 )) # Maximum so far maxi = max (left, max (right, maxi)) # Update the maximum and minimum so far minIndSoFar = min (minIndSoFar, pairs[i][ 0 ]) maxIndSoFar = max (maxIndSoFar, pairs[i][ 0 ]) return maxi # Driver code height = [ 2 , 1 , 3 , 4 , 6 , 5 ] n = len (height) print (maxWater(height, n)) |
C#
// C# implementation of the approach using System; using System.Linq; class Program { // Method to compare two pairs based on the second element static int CompareTo(Tuple< int , int > p1, Tuple< int , int > p2) { return p1.Item2.CompareTo(p2.Item2); } // Return the maximum water that can be stored static int MaxWater( int [] height, int n) { // Make pairs with indices Tuple< int , int >[] pairs = new Tuple< int , int >[n]; for ( int i = 0; i < n; i++) pairs[i] = Tuple.Create(i, height[i]); // Sort array based on heights Array.Sort(pairs, CompareTo); // To store the min and max index so far from the right int minIndSoFar = pairs[n - 1].Item1; int maxIndSoFar = pairs[n - 1].Item1; int maxi = 0; for ( int i = n - 2; i >= 0; i--) { // Current building paired with the building // greater in height and on the extreme left int left = 0; if (minIndSoFar < pairs[i].Item1) { left = (pairs[i].Item2 * (pairs[i].Item1 - minIndSoFar - 1)); } // Current building paired with the building greater // in height and on the extreme right int right = 0; if (maxIndSoFar > pairs[i].Item1) { right = (pairs[i].Item2 * (maxIndSoFar - pairs[i].Item1 - 1)); } // Maximum so far maxi = Math.Max(left, Math.Max(right, maxi)); // Update the maximum and minimum so far minIndSoFar = Math.Min(minIndSoFar, pairs[i].Item1); maxIndSoFar = Math.Max(maxIndSoFar, pairs[i].Item1); } return maxi; } static void Main( string [] args) { int [] height = { 2, 1, 3, 4, 6, 5 }; int n = height.Length; Console.WriteLine(MaxWater(height, n)); } } |
Javascript
<script> // JavaScript implementation of the above approach function compareTo(p1,p2) { return p1[1] - p2[1]; } // Return the maximum water that // can be stored function maxWater(height, n) { // Make pairs with indices let pairs = new Array(n); for (let i = 0; i < n; i++) pairs[i] = [i, height[i]]; // Sort array based on heights pairs.sort(compareTo); // To store the min and max index so far // from the right let minIndSoFar = pairs[n - 1][0]; let maxIndSoFar = pairs[n - 1][0]; let maxi = 0; for (let i = n - 2; i >= 0; i--) { // Current building paired with // the building greater in height // and on the extreme left let left = 0; if (minIndSoFar < pairs[i][0]) { left = (pairs[i][1] * (pairs[i][0] - minIndSoFar - 1)); } // Current building paired with // the building greater in height // and on the extreme right let right = 0; if (maxIndSoFar > pairs[i][0]) { right = (pairs[i][1] * (maxIndSoFar - pairs[i][0] - 1)); } // Maximum so far maxi = Math.max(left, Math.max(right, maxi)); // Update the maximum and minimum so far minIndSoFar = Math.min(minIndSoFar, pairs[i][0]); maxIndSoFar = Math.max(maxIndSoFar, pairs[i][0]); } return maxi; } // Driver code let height = [ 2, 1, 3, 4, 6, 5 ]; let n = height.length; document.write(maxWater(height, n), "</br>" ); </script> |
8
Time Complexity : O(N*log(N))
Auxiliary Space: O(N)
Maximum water that can be stored between two buildings using Two pointer approach:
Below is the idea to solve the problem
Take two pointers i and j pointing to the first and the last building respectively and calculate the water that can be stored between these two buildings. Now increment i if height[i] < height[j] else decrement j. This is because the water that can be trapped is dependent on the height of the small building and moving from the greater height building will just reduce the amount of water instead of maximizing it. In the end, print the maximum amount of water calculated so far.
Follow the below steps to implement the idea:
- Initialize variable maximum to store maximum water that can be stored, i and j pointing to the first and the last.
- Run a while loop till i < j
- If height[i] < height[j] update maximum = max(maximum, (j – i – 1) * height[i]) and increment i by 1.
- Else maximum will be updated according to right height i.e. building at j maximum = max(maximum, (j – i – 1) * height[j]) and decrement j by 1.
- return maximum.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Return the maximum water that can be stored int maxWater( int height[], int n) { // To store the maximum water so far int maximum = 0; // Both the pointers are pointing at the first // and the last buildings respectively int i = 0, j = n - 1; // While the water can be stored between // the currently chosen buildings while (i < j) { // Update maximum water so far and increment i if (height[i] < height[j]) { maximum = max(maximum, (j - i - 1) * height[i]); i++; } // Update maximum water so far and decrement j else { maximum = max(maximum, (j - i - 1) * height[j]); j--; } } return maximum; } // Driver code int main() { int height[] = { 2, 1, 3, 4, 6, 5 }; int n = sizeof (height) / sizeof (height[0]); cout << (maxWater(height, n)); } // This code is contributed by CrazyPro |
Java
// Java implementation of the approach import java.util.Arrays; class GFG { // Return the maximum water that can be stored static int maxWater( int height[], int n) { // To store the maximum water so far int max = 0 ; // Both the pointers are pointing at the first // and the last buildings respectively int i = 0 , j = n - 1 ; // While the water can be stored between // the currently chosen buildings while (i < j) { // Update maximum water so far and increment i if (height[i] < height[j]) { max = Math.max(max, (j - i - 1 ) * height[i]); i++; } // Update maximum water so far and decrement j else if (height[j] < height[i]) { max = Math.max(max, (j - i - 1 ) * height[j]); j--; } // Any of the pointers can be updated (or both) else { max = Math.max(max, (j - i - 1 ) * height[i]); i++; j--; } } return max; } // Driver code public static void main(String[] args) { int height[] = { 2 , 1 , 3 , 4 , 6 , 5 }; int n = height.length; System.out.print(maxWater(height, n)); } } |
Python3
# Python3 implementation of the approach # Return the maximum water that can be stored def maxWater(height, n): # To store the maximum water so far maximum = 0 # Both the pointers are pointing at the first # and the last buildings respectively i = 0 j = n - 1 # While the water can be stored between # the currently chosen buildings while (i < j): # Update maximum water so far and increment i if (height[i] < height[j]): maximum = max (maximum, (j - i - 1 ) * height[i]) i + = 1 # Update maximum water so far and decrement j elif (height[j] < height[i]): maximum = max (maximum, (j - i - 1 ) * height[j]) j - = 1 # Any of the pointers can be updated (or both) else : maximum = max (maximum, (j - i - 1 ) * height[i]) i + = 1 j - = 1 return maximum # Driver code height = [ 2 , 1 , 3 , 4 , 6 , 5 ] n = len (height) print (maxWater(height, n)) # This code is contributed by CrazyPro |
C#
// C# implementation of the approach using System; class GFG { // Return the maximum water that can be stored static int maxWater( int [] height, int n) { // To store the maximum water so far int max = 0; // Both the pointers are pointing at the first // and the last buildings respectively int i = 0, j = n - 1; // While the water can be stored between // the currently chosen buildings while (i < j) { // Update maximum water so far and increment i if (height[i] < height[j]) { max = Math.Max(max, (j - i - 1) * height[i]); i++; } // Update maximum water so far and decrement j else if (height[j] < height[i]) { max = Math.Max(max, (j - i - 1) * height[j]); j--; } // Any of the pointers can be updated (or both) else { max = Math.Max(max, (j - i - 1) * height[i]); i++; j--; } } return max; } // Driver code static public void Main() { int [] height = { 2, 1, 3, 4, 6, 5 }; int n = height.Length; Console.Write(maxWater(height, n)); } } // This code is contributed by jit_t |
Javascript
<script> // Javascript implementation of the approach // Return the maximum water that can be stored function maxWater(height, n) { // To store the maximum water so far var maximum = 0; // Both the pointers are pointing at the first // and the last buildings respectively var i = 0, j = n - 1; // While the water can be stored between // the currently chosen buildings while (i < j) { // Update maximum water so far and increment i if (height[i] < height[j]) { maximum = Math.max(maximum, (j - i - 1) * height[i]); i++; } // Update maximum water so far and decrement j else if (height[j] < height[i]) { maximum = Math.max(maximum, (j - i - 1) * height[j]); j--; } // Any of the pointers can be updated (or both) else { maximum = Math.max(maximum, (j - i - 1) * height[i]); i++; j--; } } return maximum; } // Driver code var height = [ 2, 1, 3, 4, 6, 5 ]; var n = height.length; document.write(maxWater(height, n)) </script> |
8
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...