Skip to content
Related Articles

Related Articles

Maximum value of X such that difference between any array element and X does not exceed K

View Discussion
Improve Article
Save Article
  • Difficulty Level : Basic
  • Last Updated : 22 Apr, 2021
View Discussion
Improve Article
Save Article

Given an array arr[] consisting of N positive integers and a positive integer K, the task is to find the maximum possible integer X, such that the absolute difference between any array element and X is at most K. If no such value of X exists, then print “-1”.

Examples:

Input: arr[] = {6, 4, 8, 5}, K = 2
Output: 6
Explanation: Considering X to be 6, the absolute difference between every array element and X(= 6) is at most K (= 2), as illustrated below:

  • Absolute difference between arr[0](= 6) and X(= 6) = |6 – 6| = 0.
  • Absolute difference between arr[1](= 4) and X(= 6) = |4 – 6| = 2.
  • Absolute difference between arr[2](= 8) and X(= 6) = |8 – 6| = 2.
  • Absolute difference between arr[3](= 5) and X(= 6) = |5 – 6| = 1.

Input: arr[] = {1, 2, 5}, K = 2
Output: 3

Approach: The given problem can be solved based on the following observations:

  • Considering array elements to be arr[i], the value of |arr[i] – X| must be at most K.
  • If arr[i] > X, then X ≤ (arr[i] – K). Otherwise, X ≤ (arr[i] + K).
  • From the above two equations, the maximum value of X must be the sum of minimum value of arr[i] and K.

Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum value
// of X such that |A[i] - X| ≤ K
int maximumNumber(int arr[], int N,
                  int K)
{
    // Stores the smallest array element
    int minimum = *min_element(arr,
                               arr + N);
 
    // Store the possible value of X
    int ans = minimum + K;
 
    // Traverse the array A[]
    for (int i = 0; i < N; i++) {
 
        // If required criteria is not satisfied
        if (abs(arr[i] - ans) > K) {
 
            // Update ans
            ans = -1;
            break;
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 5 };
    int K = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
    maximumNumber(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find maximum value
// of X such that |A[i] - X| ≤ K
static void maximumNumber(int arr[], int N,
                          int K)
{
     
    // Stores the smallest array element
    int minimum =  Arrays.stream(arr).min().getAsInt();
 
    // Store the possible value of X
    int ans = minimum + K;
 
    // Traverse the array A[]
    for(int i = 0; i < N; i++)
    {
         
        // If required criteria is not satisfied
        if (Math.abs(arr[i] - ans) > K)
        {
             
            // Update ans
            ans = -1;
            break;
        }
    }
 
    // Print the result
    System.out.print(ans);
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 1, 2, 5 };
    int K = 2;
    int N = arr.length;
     
    maximumNumber(arr, N, K);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to find maximum value
# of X such that |A[i] - X| ≤ K
def maximumNumber(arr, N, K):
     
    # Stores the smallest array element
    minimum = min(arr)
 
    # Store the possible value of X
    ans = minimum + K
 
    # Traverse the array A[]
    for i in range(N):
         
        # If required criteria is not satisfied
        if (abs(arr[i] - ans) > K):
             
            # Update ans
            ans = -1
            break
 
    # Print the result
    print(ans)
 
# Driver Code
if __name__ == '__main__':
     
    arr =  [1, 2, 5]
    K = 2
    N = len(arr)
     
    maximumNumber(arr, N, K)
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find maximum value
// of X such that |A[i] - X| ≤ K
static void maximumNumber(int []arr, int N,
                          int K)
{
     
    // Stores the smallest array element
    int mn = 100000000;
    for(int i = 0; i < N; i++)
    {
        if (arr[i] < mn)
          mn = arr[i];
    }
     
    // Store the possible value of X
    int ans = mn + K;
 
    // Traverse the array A[]
    for(int i = 0; i < N; i++)
    {
 
        // If required criteria is not satisfied
        if (Math.Abs(arr[i] - ans) > K)
        {
 
            // Update ans
            ans = -1;
            break;
        }
    }
 
    // Print the result
    Console.Write(ans);
}
 
// Driver Code
public static void Main()
{
    int []arr = { 1, 2, 5 };
    int K = 2;
    int N = arr.Length;
     
    maximumNumber(arr, N, K);
}
}
 
// This code is contributed by ipg2016107


Javascript




<script>
 
        // Javascript program for
        // the above approach
 
        // Function to find maximum value
        // of X such that |A[i] - X| ≤ K
        function maximumNumber(arr, N, K)
        {
            // Stores the smallest
            // array element
            let minimum = Math.min(...arr)
 
            // Store the possible value of X
            let ans = minimum + K;
 
            // Traverse the array A[]
            for (let i = 0; i < N; i++) {
 
                // If required criteria is
                // not satisfied
                if (Math.abs(arr[i] - ans) > K)
                {
 
                    // Update ans
                    ans = -1;
                    break;
                }
            }
 
            // Print the result
            document.write(ans)
        }
 
        // Driver Code
        let arr = [1, 2, 5]
        let K = 2
        let N = arr.length
        maximumNumber(arr, N, K);
 
 
        // This code is contributed by Hritik
         
    </script>


Output: 

3

 

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!