Maximum sum of values in a given range of an Array for Q queries when shuffling is allowed
Given an array arr[] and K subarrays in the form (Li, Ri), the task is to find the maximum possible value of
. It is allowed to shuffle the array before calculating this value to get the maximum sum.
Examples:
Input: arr[] = {1, 1, 2, 2, 4}, queries = {{1, 2}, {2, 4}, {1, 3}, {5, 5}, {3, 5}}
Output: 26
Explanation:
Shuffled Array to get the maximum sum – {2, 4, 2, 1, 1}
Subarray Sum = arr[1:2] + arr[2:4] + arr[1:3] + arr[5:5] + arr[3:5]
=> 6 + 7 + 8 + 1 + 4 = 26Input: arr[] = {4, 1, 2, 1, 9, 2}, queries = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}
Output: 49
Explanation:
Shuffled Array to get the maximum sum – {2, 4, 9, 2, 1, 1}
Subarray Sum = arr[1:2] + arr[1:3] + arr[1:4] + arr[3:4]
=> 6 + 15 + 17 + 11 = 49
Naive Approach: A simple solution is to compute the maximum sum of all possible permutations of the given array and check which sequence gives us the maximum summation.
Efficient Approach: The idea is to use Prefix Arrays to find out the frequency of indices over all subarrays. We can do this as follows:
//Initialize an array prefSum[n] = {0, 0, ...0} for each Li, Ri: prefSum[Li]++ prefSum[Ri+1]-- // Find Prefix sum for i=1 to N: prefSum[i] += prefSum[i-1] // prefSum contains frequency of // each index over all subarrays
Finally, greedily choose the index with the highest frequency and put the largest element of the array at that index. This way we will get the largest possible sum.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // maximum sum of K subarrays // when shuffling is allowed #include <bits/stdc++.h> using namespace std; // Function to find the // maximum sum of all subarrays int maximumSubarraySum( int a[], int n, vector<pair< int , int > >& subarrays) { // Initialize maxsum // and prefixArray int i, maxsum = 0; int prefixArray[n] = { 0 }; // Find the frequency // using prefix Array for (i = 0; i < subarrays.size(); ++i) { prefixArray[subarrays[i].first - 1]++; prefixArray[subarrays[i].second]--; } // Perform prefix sum for (i = 1; i < n; i++) { prefixArray[i] += prefixArray[i - 1]; } // Sort both arrays to get a greedy result sort(prefixArray, prefixArray + n, greater< int >()); sort(a, a + n, greater< int >()); // Finally multiply largest frequency with // largest array element. for (i = 0; i < n; i++) maxsum += a[i] * prefixArray[i]; // Return the answer return maxsum; } // Driver Code int main() { int n = 6; // Initial Array int a[] = { 4, 1, 2, 1, 9, 2 }; // Subarrays vector<pair< int , int > > subarrays; subarrays.push_back({ 1, 2 }); subarrays.push_back({ 1, 3 }); subarrays.push_back({ 1, 4 }); subarrays.push_back({ 3, 4 }); // Function Call cout << maximumSubarraySum(a, n, subarrays); } |
Java
// Java implementation to find the // maximum sum of K subarrays // when shuffling is allowed import java.util.*; import java.lang.*; class GFG{ // Function to find the // maximum sum of all subarrays static int maximumSubarraySum( int a[], int n, ArrayList<List<Integer>> subarrays) { // Initialize maxsum // and prefixArray int i, maxsum = 0 ; int [] prefixArray = new int [n]; // Find the frequency // using prefix Array for (i = 0 ; i < subarrays.size(); ++i) { prefixArray[subarrays.get(i).get( 0 ) - 1 ]++; prefixArray[subarrays.get(i).get( 1 )]--; } // Perform prefix sum for (i = 1 ; i < n; i++) { prefixArray[i] += prefixArray[i - 1 ]; } // Sort both arrays to get a // greedy result Arrays.sort(prefixArray); Arrays.sort(a); // Finally multiply largest // frequency with largest // array element. for (i = 0 ; i < n; i++) maxsum += a[i] * prefixArray[i]; // Return the answer return maxsum; } // Driver code public static void main (String[] args) { int n = 6 ; // Initial Array int a[] = { 4 , 1 , 2 , 1 , 9 , 2 }; // Subarrays ArrayList<List<Integer>> subarrays = new ArrayList<>(); subarrays.add(Arrays.asList( 1 , 2 )); subarrays.add(Arrays.asList( 1 , 3 )); subarrays.add(Arrays.asList( 1 , 4 )); subarrays.add(Arrays.asList( 3 , 4 )); // Function call System.out.println(maximumSubarraySum(a, n, subarrays)); } } // This code is contributed by offbeat |
Python3
# Python3 implementation to find the # maximum sum of K subarrays # when shuffling is allowed # Function to find the # maximum sum of all subarrays def maximumSubarraySum(a, n, subarrays): # Initialize maxsum # and prefixArray maxsum = 0 prefixArray = [ 0 ] * n # Find the frequency # using prefix Array for i in range ( len (subarrays)): prefixArray[subarrays[i][ 0 ] - 1 ] + = 1 prefixArray[subarrays[i][ 1 ]] - = 1 # Perform prefix sum for i in range ( 1 , n): prefixArray[i] + = prefixArray[i - 1 ] # Sort both arrays to get a greedy result prefixArray.sort() prefixArray.reverse() a.sort() a.reverse() # Finally multiply largest frequency with # largest array element. for i in range (n): maxsum + = a[i] * prefixArray[i] # Return the answer return maxsum # Driver Code n = 6 # Initial Array a = [ 4 , 1 , 2 , 1 , 9 , 2 ] # Subarrays subarrays = [ [ 1 , 2 ], [ 1 , 3 ], [ 1 , 4 ], [ 3 , 4 ] ] # Function Call print (maximumSubarraySum(a, n, subarrays)) # This code is contributed by divyeshrabadiya07 |
C#
// C# implementation to find the // maximum sum of K subarrays // when shuffling is allowed using System; using System.Collections.Generic; class GFG{ // Function to find the // maximum sum of all subarrays static int maximumSubarraySum( int [] a, int n, List<List< int >> subarrays) { // Initialize maxsum // and prefixArray int i, maxsum = 0; int [] prefixArray = new int [n]; // Find the frequency // using prefix Array for (i = 0; i < subarrays.Count; ++i) { prefixArray[subarrays[i][0] - 1]++; prefixArray[subarrays[i][1]]--; } // Perform prefix sum for (i = 1; i < n; i++) { prefixArray[i] += prefixArray[i - 1]; } // Sort both arrays to get a // greedy result Array.Sort(prefixArray); Array.Sort(a); // Finally multiply largest // frequency with largest // array element. for (i = 0; i < n; i++) maxsum += a[i] * prefixArray[i]; // Return the answer return maxsum; } // Driver Code static void Main() { int n = 6; // Initial Array int [] a = { 4, 1, 2, 1, 9, 2 }; // Subarrays List<List< int >> subarrays = new List<List< int >>(); subarrays.Add( new List< int >{ 1, 2 }); subarrays.Add( new List< int >{ 1, 3 }); subarrays.Add( new List< int >{ 1, 4 }); subarrays.Add( new List< int >{ 3, 4 }); // Function call Console.WriteLine(maximumSubarraySum(a, n,subarrays)); } } // This code is contributed by divyesh072019 |
Javascript
<script> // Javascript implementation to find the // maximum sum of K subarrays // when shuffling is allowed // Function to find the // maximum sum of all subarrays function maximumSubarraySum(a, n, subarrays) { // Initialize maxsum // and prefixArray let i, maxsum = 0; let prefixArray = new Array(n); prefixArray.fill(0); // Find the frequency // using prefix Array for (i = 0; i < subarrays.length; ++i) { prefixArray[subarrays[i][0] - 1]++; prefixArray[subarrays[i][1]]--; } // Perform prefix sum for (i = 1; i < n; i++) { prefixArray[i] += prefixArray[i - 1]; } // Sort both arrays to get a // greedy result prefixArray.sort(); a.sort(); // Finally multiply largest // frequency with largest // array element. for (i = 0; i < n; i++) maxsum += a[i] * prefixArray[i]; // Return the answer return maxsum; } let n = 6; // Initial Array let a = [ 4, 1, 2, 1, 9, 2 ]; // Subarrays let subarrays = []; subarrays.push([ 1, 2 ]); subarrays.push([ 1, 3 ]); subarrays.push([ 1, 4 ]); subarrays.push([ 3, 4 ]); // Function call document.write(maximumSubarraySum(a, n,subarrays)); </script> |
49
Please Login to comment...