# Maximum possible prime divisors that can exist in numbers having exactly N divisors

• Last Updated : 30 May, 2021

Given an integer N which denotes the number of divisors of any number, the task is to find the maximum prime divisors that are possible in number having N divisors.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 4
Output: 2

Input: N = 8
Output:

Approach: The idea is to find the prime factorization of the number N, then the sum of the powers of the prime divisors is the maximum possible prime divisors of a number can have with N divisors.

For Example:

```Let the number of divisors of number be 4,

Then the possible numbers can be 6, 10, 15,...
Divisors of 6 = 1, 2, 3, 6

Total number of prime-divisors = 2 (2, 3)

Prime Factorization of 4 = 22
Sum of powers of prime factors = 2```

Below is the implementation of the above approach:

## C++

 `// C++ implementation to find the` `// maximum possible prime divisor` `// of a number can have N divisors`   `#include `   `using` `namespace` `std;`   `#define ll long long int`   `// Function to find the ` `// maximum possible prime divisors` `// of a number can have with N divisors` `void` `findMaxPrimeDivisor(``int` `n){` `    `  `    ``int` `max_possible_prime = 0;`   `    ``// Number of time number` `    ``// divided by 2` `    ``while` `(n % 2 == 0) {` `        ``max_possible_prime++;` `        ``n = n / 2;` `    ``}`   `    ``// Divide by other prime numbers` `    ``for` `(``int` `i = 3; i * i <= n; i = i + 2) {` `        ``while` `(n % i == 0) {` `            ``max_possible_prime++;` `            ``n = n / i;` `        ``}` `    ``}`   `    ``// If the last number of also` `    ``// prime then also include it` `    ``if` `(n > 2) {` `        ``max_possible_prime++;` `    ``}`   `    ``cout << max_possible_prime << ``"\n"``;` `}`   `// Driver Code` `int` `main()` `{`   `    ``int` `n = 4;` `    `  `    ``// Function Call` `    ``findMaxPrimeDivisor(n);` `    ``return` `0;` `}`

## Java

 `// Java implementation to find the` `// maximum possible prime divisor` `// of a number can have N divisors` `import` `java.util.*;`   `class` `GFG{`   `// Function to find the ` `// maximum possible prime divisors` `// of a number can have with N divisors` `static` `void` `findMaxPrimeDivisor(``int` `n)` `{` `    ``int` `max_possible_prime = ``0``;`   `    ``// Number of time number` `    ``// divided by 2` `    ``while` `(n % ``2` `== ``0``)` `    ``{` `        ``max_possible_prime++;` `        ``n = n / ``2``;` `    ``}`   `    ``// Divide by other prime numbers` `    ``for``(``int` `i = ``3``; i * i <= n; i = i + ``2``)` `    ``{` `       ``while` `(n % i == ``0``)` `       ``{` `           ``max_possible_prime++;` `           ``n = n / i;` `       ``}` `    ``}`   `    ``// If the last number of also` `    ``// prime then also include it` `    ``if` `(n > ``2``) ` `    ``{` `        ``max_possible_prime++;` `    ``}` `    ``System.out.print(max_possible_prime + ``"\n"``);` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    ``int` `n = ``4``;` `    `  `    ``// Function Call` `    ``findMaxPrimeDivisor(n);` `}` `}`   `// This code is contributed by amal kumar choubey`

## Python3

 `# Python3 implementation to find the` `# maximum possible prime divisor` `# of a number can have N divisors`   `# Function to find the maximum ` `# possible prime divisors of a ` `# number can have with N divisors` `def` `findMaxPrimeDivisor(n):` `    `  `    ``max_possible_prime ``=` `0` `    `  `    ``# Number of time number` `    ``# divided by 2` `    ``while` `(n ``%` `2` `=``=` `0``):` `        ``max_possible_prime ``+``=` `1` `        ``n ``=` `n ``/``/` `2` `        `  `    ``# Divide by other prime numbers` `    ``i ``=` `3` `    ``while``(i ``*` `i <``=` `n):` `        ``while` `(n ``%` `i ``=``=` `0``):` `            `  `            ``max_possible_prime ``+``=` `1` `            ``n ``=` `n ``/``/` `i` `        ``i ``=` `i ``+` `2` `        `  `    ``# If the last number of also` `    ``# prime then also include it` `    ``if` `(n > ``2``):` `        ``max_possible_prime ``+``=` `1` `    `  `    ``print``(max_possible_prime)`   `# Driver Code` `n ``=` `4`   `# Function Call` `findMaxPrimeDivisor(n)`   `# This code is contributed by SHUBHAMSINGH10`

## C#

 `// C# implementation to find the` `// maximum possible prime divisor` `// of a number can have N divisors` `using` `System;`   `class` `GFG{`   `// Function to find the ` `// maximum possible prime divisors` `// of a number can have with N divisors` `static` `void` `findMaxPrimeDivisor(``int` `n)` `{` `    ``int` `max_possible_prime = 0;`   `    ``// Number of time number` `    ``// divided by 2` `    ``while` `(n % 2 == 0)` `    ``{` `        ``max_possible_prime++;` `        ``n = n / 2;` `    ``}`   `    ``// Divide by other prime numbers` `    ``for``(``int` `i = 3; i * i <= n; i = i + 2)` `    ``{` `       ``while` `(n % i == 0)` `       ``{` `           ``max_possible_prime++;` `           ``n = n / i;` `       ``}` `    ``}`   `    ``// If the last number of also` `    ``// prime then also include it` `    ``if` `(n > 2) ` `    ``{` `        ``max_possible_prime++;` `    ``}` `    ``Console.Write(max_possible_prime + ``"\n"``);` `}`   `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` `    ``int` `n = 4;` `    `  `    ``// Function Call` `    ``findMaxPrimeDivisor(n);` `}` `}`   `// This code is contributed by amal kumar choubey`

## Javascript

 ``

Output:

`2`

Time Complexity: O(sqrt(N) * logN )

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up
Recommended Articles
Page :